File size: 6,045 Bytes
0b5b901
87012a8
4189fe1
9bf14d0
87012a8
d9ea17d
0316ec3
e3958ab
479f253
 
 
2008a3f
1ab029d
e3958ab
 
 
 
 
 
 
 
 
 
 
 
 
 
479f253
e3958ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf14d0
0dfc310
9bf14d0
e3958ab
 
9bf14d0
 
e3958ab
5031731
e3958ab
 
0b5b901
 
9bf14d0
5031731
e3958ab
 
bca75ea
d44e840
f63f843
e3958ab
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5b901
e3958ab
 
 
 
 
 
9e2fbd8
e3958ab
 
9e2fbd8
e3958ab
0b5b901
 
e3958ab
a8606ac
d44e840
a09ea48
4189fe1
d44e840
e3958ab
 
 
 
 
 
 
 
f63f843
 
e3958ab
 
 
 
 
 
 
5031731
e3958ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5b901
e3958ab
 
 
 
 
d44e840
 
9ef5e61
bca75ea
e3958ab
bca75ea
5031731
479f253
a09ea48
e3958ab
5031731
479f253
5031731
 
e3958ab
 
 
 
5031731
e3958ab
a4cfefc
e3958ab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# app.py ──────────────────────────────────────────────────────────────
import os, json, torch, asyncio
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor
from snac import SNAC

# 0) Login + Device ---------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
    login(HF_TOKEN)

device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cuda.enable_flash_sdp(False)          # PyTorch‑2.2‑Bug

# 1) Konstanten -------------------------------------------------------
REPO           = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
CHUNK_TOKENS   = 50
START_TOKEN    = 128259
NEW_BLOCK      = 128257
EOS_TOKEN      = 128258
AUDIO_BASE     = 128266
AUDIO_IDS      = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096)

# 2) Logit‑Mask (NEW_BLOCK + Audio; EOS erst nach 1. Block) ----------
class AudioMask(LogitsProcessor):
    def __init__(self, audio_ids: torch.Tensor):
        super().__init__()
        self.allow = torch.cat([
            torch.tensor([NEW_BLOCK], device=audio_ids.device),
            audio_ids
        ])
        self.eos   = torch.tensor([EOS_TOKEN], device=audio_ids.device)
        self.sent_blocks = 0

    def __call__(self, input_ids, logits):
        allowed = self.allow
        if self.sent_blocks:                        # ab 1. Block EOS zulassen
            allowed = torch.cat([allowed, self.eos])
        mask = logits.new_full(logits.shape, float("-inf"))
        mask[:, allowed] = 0
        return logits + mask

# 3) FastAPI Grundgerüst ---------------------------------------------
app = FastAPI()

@app.get("/")
def hello():
    return {"status": "ok"}

@app.on_event("startup")
def load_models():
    global tok, model, snac, masker
    print("⏳ Lade Modelle …", flush=True)

    tok   = AutoTokenizer.from_pretrained(REPO)
    snac  = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
    model = AutoModelForCausalLM.from_pretrained(
        REPO,
        device_map={"": 0} if device == "cuda" else None,
        torch_dtype=torch.bfloat16 if device == "cuda" else None,
        low_cpu_mem_usage=True,
    )
    model.config.pad_token_id = model.config.eos_token_id
    masker = AudioMask(AUDIO_IDS.to(device))

    print("✅ Modelle geladen", flush=True)

# 4) Helper -----------------------------------------------------------
def build_prompt(text: str, voice: str):
    prompt_ids = tok(f"{voice}: {text}", return_tensors="pt").input_ids.to(device)
    ids   = torch.cat([torch.tensor([[START_TOKEN]], device=device),
                       prompt_ids,
                       torch.tensor([[128009, 128260]], device=device)], 1)
    attn  = torch.ones_like(ids)
    return ids, attn

def decode_block(block7: list[int]) -> bytes:
    l1,l2,l3=[],[],[]
    l1.append(block7[0])
    l2.append(block7[1]-4096)
    l3 += [block7[2]-8192, block7[3]-12288]
    l2.append(block7[4]-16384)
    l3 += [block7[5]-20480, block7[6]-24576]

    with torch.no_grad():
        codes = [torch.tensor(x, device=device).unsqueeze(0)
                 for x in (l1,l2,l3)]
        audio = snac.decode(codes).squeeze().detach().cpu().numpy()

    return (audio*32767).astype("int16").tobytes()

# 5) WebSocket‑Endpoint ----------------------------------------------
@app.websocket("/ws/tts")
async def tts(ws: WebSocket):
    await ws.accept()
    try:
        req   = json.loads(await ws.receive_text())
        text  = req.get("text", "")
        voice = req.get("voice", "Jakob")

        ids, attn  = build_prompt(text, voice)
        past       = None
        offset_len = ids.size(1)          # wie viele Tokens existieren schon
        last_tok   = None
        buf        = []

        while True:
            # --- Mini‑Generate -------------------------------------------
            gen = model.generate(
                input_ids       = ids if past is None else torch.tensor([[last_tok]], device=device),
                attention_mask  = attn if past is None else None,
                past_key_values = past,
                max_new_tokens  = CHUNK_TOKENS,
                logits_processor= [masker],
                do_sample=True, temperature=0.7, top_p=0.95,
                use_cache=True
            )

            # ----- neue Tokens heraus schneiden --------------------------
            new = gen[0, offset_len:].tolist()
            if not new:                         # nichts -> fertig
                break
            offset_len += len(new)

            # ----- weiter mit Cache (letzte PKV steht im Modell) ---------
            past     = model._past_key_values
            last_tok = new[-1]

            print("new tokens:", new[:25], flush=True)

            # ----- Token‑Handling ----------------------------------------
            for t in new:
                if t == EOS_TOKEN:
                    raise StopIteration
                if t == NEW_BLOCK:
                    buf.clear()
                    continue
                buf.append(t - AUDIO_BASE)
                if len(buf) == 7:
                    await ws.send_bytes(decode_block(buf))
                    buf.clear()
                    masker.sent_blocks = 1      # ab jetzt EOS zulässig

    except (StopIteration, WebSocketDisconnect):
        pass
    except Exception as e:
        print("❌ WS‑Error:", e, flush=True)
        if ws.client_state.name != "DISCONNECTED":
            await ws.close(code=1011)
    finally:
        if ws.client_state.name != "DISCONNECTED":
            try:
                await ws.close()
            except RuntimeError:
                pass

# 6) Dev‑Start --------------------------------------------------------
if __name__ == "__main__":
    import uvicorn, sys
    uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")