File size: 7,736 Bytes
b45ed35
 
4715aa2
b45ed35
 
dbb4a9f
b45ed35
 
 
dbb4a9f
1a347c6
 
89afaf3
1a347c6
 
 
 
 
 
 
 
 
 
 
 
b45ed35
 
4715aa2
b45ed35
 
 
 
4715aa2
b45ed35
 
 
55145d2
b45ed35
1d792aa
b45ed35
4715aa2
 
b45ed35
4715aa2
 
 
 
 
b45ed35
 
1d792aa
b45ed35
 
 
4715aa2
b45ed35
1a347c6
 
b45ed35
1a347c6
4715aa2
b45ed35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4715aa2
b45ed35
 
 
 
4715aa2
 
b45ed35
 
1a347c6
b45ed35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4715aa2
b45ed35
 
 
 
 
 
 
 
 
 
4715aa2
b45ed35
 
 
 
 
 
1a347c6
b45ed35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55145d2
b45ed35
 
4715aa2
b45ed35
 
 
 
 
 
 
4715aa2
 
b45ed35
 
 
 
 
 
1a347c6
b45ed35
 
 
 
 
55145d2
 
b45ed35
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, HTTPException, Query
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import struct
import sys
import os
import json
import asyncio
import logging

# ===== MODEL CONFIGURATION =====
# Einfach zwischen den deutschen Modellen wechseln:
USE_KARTOFFEL_MODEL = False  # True = Kartoffel, False = Canopy-Deutsch

if USE_KARTOFFEL_MODEL:
    MODEL_NAME = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
    TOKENIZER_NAME = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
    DEFAULT_VOICE = "Jakob"
    print("🥔 Using Kartoffel German Model")
else:
    MODEL_NAME = "canopylabs/3b-de-ft-research_release"
    TOKENIZER_NAME = "canopylabs/3b-de-ft-research_release"
    DEFAULT_VOICE = "thomas"
    print("🇩🇪 Using Canopy German Model")

# Add the orpheus-tts module to the path
sys.path.append(os.path.join(os.path.dirname(__file__), 'orpheus-tts'))

try:
    from orpheus_tts.engine_class import OrpheusModel
except ImportError:
    from engine_class import OrpheusModel

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(title="Orpheus TTS Server", version="1.0.0")

# Add CORS middleware for web clients
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize the Orpheus model
engine = None

@app.on_event("startup")
async def startup_event():
    global engine
    try:
        engine = OrpheusModel(
            model_name=MODEL_NAME,
            tokenizer=TOKENIZER_NAME
        )
        logger.info(f"Orpheus model loaded successfully: {MODEL_NAME}")
    except Exception as e:
        logger.error(f"Error loading Orpheus model: {e}")
        raise e

def create_wav_header(sample_rate=24000, bits_per_sample=16, channels=1):
    """Create WAV header for audio streaming"""
    byte_rate = sample_rate * channels * bits_per_sample // 8
    block_align = channels * bits_per_sample // 8
    data_size = 0

    header = struct.pack(
        '<4sI4s4sIHHIIHH4sI',
        b'RIFF',
        36 + data_size,       
        b'WAVE',
        b'fmt ',
        16,                  
        1,             
        channels,
        sample_rate,
        byte_rate,
        block_align,
        bits_per_sample,
        b'data',
        data_size
    )
    return header

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    return {"status": "healthy", "model_loaded": engine is not None}

@app.get("/tts")
async def tts_stream(
    prompt: str = Query(..., description="Text to synthesize"),
    voice: str = Query(DEFAULT_VOICE, description="Voice to use"),
    temperature: float = Query(0.4, description="Temperature for generation"),
    top_p: float = Query(0.9, description="Top-p for generation"),
    max_tokens: int = Query(2000, description="Maximum tokens"),
    repetition_penalty: float = Query(1.1, description="Repetition penalty")
):
    """HTTP endpoint for TTS streaming"""
    if engine is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    def generate_audio_stream():
        try:
            # Send WAV header first
            yield create_wav_header()
            
            # Generate speech tokens
            syn_tokens = engine.generate_speech(
                prompt=prompt,
                voice=voice,
                repetition_penalty=repetition_penalty,
                stop_token_ids=[128258],
                max_tokens=max_tokens,
                temperature=temperature,
                top_p=top_p
            )
            
            # Stream audio chunks
            for chunk in syn_tokens:
                yield chunk
                
        except Exception as e:
            logger.error(f"Error in TTS generation: {e}")
            raise HTTPException(status_code=500, detail=str(e))

    return StreamingResponse(
        generate_audio_stream(), 
        media_type='audio/wav',
        headers={
            "Cache-Control": "no-cache",
            "Connection": "keep-alive",
        }
    )

@app.websocket("/ws/tts")
async def websocket_tts(websocket: WebSocket):
    """WebSocket endpoint for real-time TTS streaming"""
    await websocket.accept()
    
    if engine is None:
        await websocket.send_json({"error": "Model not loaded"})
        await websocket.close()
        return
    
    try:
        while True:
            # Receive request from client
            data = await websocket.receive_text()
            request = json.loads(data)
            
            prompt = request.get("prompt", "")
            voice = request.get("voice", DEFAULT_VOICE)
            temperature = request.get("temperature", 0.4)
            top_p = request.get("top_p", 0.9)
            max_tokens = request.get("max_tokens", 2000)
            repetition_penalty = request.get("repetition_penalty", 1.1)
            
            if not prompt:
                await websocket.send_json({"error": "No prompt provided"})
                continue
            
            # Send status update
            await websocket.send_json({"status": "generating", "prompt": prompt})
            
            try:
                # Send WAV header
                wav_header = create_wav_header()
                await websocket.send_bytes(wav_header)
                
                # Generate and stream audio
                syn_tokens = engine.generate_speech(
                    prompt=prompt,
                    voice=voice,
                    repetition_penalty=repetition_penalty,
                    stop_token_ids=[128258],
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=top_p
                )
                
                chunk_count = 0
                for chunk in syn_tokens:
                    await websocket.send_bytes(chunk)
                    chunk_count += 1
                    
                    # Send periodic status updates
                    if chunk_count % 10 == 0:
                        await websocket.send_json({
                            "status": "streaming", 
                            "chunks_sent": chunk_count
                        })
                
                # Send completion status
                await websocket.send_json({
                    "status": "completed", 
                    "total_chunks": chunk_count
                })
                
            except Exception as e:
                logger.error(f"Error in WebSocket TTS generation: {e}")
                await websocket.send_json({"error": str(e)})
                
    except WebSocketDisconnect:
        logger.info("WebSocket client disconnected")
    except Exception as e:
        logger.error(f"WebSocket error: {e}")
        await websocket.close()

@app.get("/voices")
async def get_available_voices():
    """Get list of available voices"""
    if engine is None:
        raise HTTPException(status_code=503, detail="Model not loaded")
    
    return {"voices": engine.available_voices}

@app.get("/")
async def root():
    """Root endpoint with API information"""
    return {
        "message": "Orpheus TTS Server",
        "endpoints": {
            "health": "/health",
            "tts_http": f"/tts?prompt=your_text&voice={DEFAULT_VOICE}",
            "tts_websocket": "/ws/tts",
            "voices": "/voices"
        },
        "model_loaded": engine is not None
    }

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")