|
|
|
import os, json, asyncio, torch |
|
from fastapi import FastAPI, WebSocket, WebSocketDisconnect |
|
from huggingface_hub import login |
|
from transformers import (AutoTokenizer, AutoModelForCausalLM, LogitsProcessor) |
|
from transformers.generation.utils import Cache |
|
from snac import SNAC |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if HF_TOKEN: |
|
login(HF_TOKEN) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
torch.backends.cuda.enable_flash_sdp(False) |
|
|
|
|
|
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" |
|
CHUNK_TOKENS = 50 |
|
START_TOKEN = 128259 |
|
NEW_BLOCK_TOKEN = 128257 |
|
EOS_TOKEN = 128258 |
|
AUDIO_BASE = 128266 |
|
VALID_AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096) |
|
|
|
|
|
class DynamicAudioMask(LogitsProcessor): |
|
""" |
|
blockt EOS, bis mindestens `min_audio_blocks` gesendet wurden |
|
""" |
|
def __init__(self, audio_ids: torch.Tensor, min_audio_blocks: int = 1): |
|
super().__init__() |
|
self.audio_ids = audio_ids |
|
self.ctrl_ids = torch.tensor([NEW_BLOCK_TOKEN], device=audio_ids.device) |
|
self.min_blocks = min_audio_blocks |
|
self.blocks_done = 0 |
|
|
|
def __call__(self, input_ids, scores): |
|
allowed = torch.cat([self.audio_ids, self.ctrl_ids]) |
|
if self.blocks_done >= self.min_blocks: |
|
allowed = torch.cat([allowed, torch.tensor([EOS_TOKEN], device=scores.device)]) |
|
mask = torch.full_like(scores, float("-inf")) |
|
mask[:, allowed] = 0 |
|
return scores + mask |
|
|
|
|
|
app = FastAPI() |
|
|
|
@app.get("/") |
|
async def ping(): |
|
return {"msg": "OrpheusβTTS up & running"} |
|
|
|
@app.on_event("startup") |
|
async def load_models(): |
|
global tok, model, snac, masker |
|
print("β³Β Lade Modelle β¦") |
|
|
|
tok = AutoTokenizer.from_pretrained(REPO) |
|
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
REPO, |
|
low_cpu_mem_usage=True, |
|
device_map={"": 0} if device == "cuda" else None, |
|
torch_dtype=torch.bfloat16 if device == "cuda" else None, |
|
) |
|
model.config.pad_token_id = model.config.eos_token_id |
|
model.config.use_cache = True |
|
|
|
masker = DynamicAudioMask(VALID_AUDIO_IDS.to(device)) |
|
print("β
Β Modelle geladen") |
|
|
|
|
|
def build_inputs(text: str, voice: str): |
|
prompt = f"{voice}: {text}" |
|
ids = tok(prompt, return_tensors="pt").input_ids.to(device) |
|
ids = torch.cat( |
|
[ torch.tensor([[START_TOKEN]], device=device), |
|
ids, |
|
torch.tensor([[128009, 128260]], device=device) ], |
|
dim=1, |
|
) |
|
attn = torch.ones_like(ids) |
|
return ids, attn |
|
|
|
def decode_block(block7: list[int]) -> bytes: |
|
l1, l2, l3 = [], [], [] |
|
b = block7 |
|
l1.append(b[0]) |
|
l2.append(b[1] - 4096) |
|
l3.extend([b[2] - 8192, b[3] - 12288]) |
|
l2.append(b[4] - 16384) |
|
l3.extend([b[5] - 20480, b[6] - 24576]) |
|
|
|
codes = [ |
|
torch.tensor(l1, device=device).unsqueeze(0), |
|
torch.tensor(l2, device=device).unsqueeze(0), |
|
torch.tensor(l3, device=device).unsqueeze(0), |
|
] |
|
audio = snac.decode(codes).squeeze().cpu().numpy() |
|
return (audio * 32767).astype("int16").tobytes() |
|
|
|
|
|
@app.websocket("/ws/tts") |
|
async def tts(ws: WebSocket): |
|
await ws.accept() |
|
try: |
|
req = json.loads(await ws.receive_text()) |
|
text = req.get("text", "") |
|
voice = req.get("voice", "Jakob") |
|
|
|
ids, attn = build_inputs(text, voice) |
|
past = None |
|
buf = [] |
|
|
|
while True: |
|
out = model.generate( |
|
input_ids = ids if past is None else None, |
|
attention_mask = attn if past is None else None, |
|
past_key_values = past, |
|
max_new_tokens = CHUNK_TOKENS, |
|
logits_processor= [masker], |
|
do_sample=True, temperature=0.7, top_p=0.95, |
|
return_dict_in_generate=True, |
|
use_cache=True, |
|
) |
|
|
|
|
|
pkv = out.past_key_values |
|
if isinstance(pkv, Cache): |
|
pkv = pkv.to_legacy() |
|
past = pkv |
|
|
|
new = out.sequences[0, -out.num_generated_tokens :].tolist() |
|
print("new tokens:", new[:20]) |
|
|
|
|
|
for t in new: |
|
if t == EOS_TOKEN: |
|
raise StopIteration |
|
|
|
if t == NEW_BLOCK_TOKEN: |
|
buf.clear() |
|
continue |
|
|
|
buf.append(t - AUDIO_BASE) |
|
if len(buf) == 7: |
|
await ws.send_bytes(decode_block(buf)) |
|
buf.clear() |
|
masker.blocks_done += 1 |
|
|
|
|
|
ids, attn = None, None |
|
|
|
except (StopIteration, WebSocketDisconnect): |
|
pass |
|
except Exception as e: |
|
print("βΒ WSβError:", e) |
|
if ws.client_state.name != "DISCONNECTED": |
|
await ws.close(code=1011) |
|
finally: |
|
if ws.client_state.name != "DISCONNECTED": |
|
try: |
|
await ws.close() |
|
except RuntimeError: |
|
pass |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run("app:app", host="0.0.0.0", port=7860) |
|
|