Tomtom84's picture
Update app.py
986d4cd verified
raw
history blame
5.17 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
# — HF‑Token & Login —
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
# — Gerät wählen —
device = "cuda" if torch.cuda.is_available() else "cpu"
# — Modell‑Parameter —
MODEL_NAME = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
START_MARKER = 128259 # <|startoftranscript|>
RESTART_MARKER = 128257 # <|startoftranscript_again|>
EOS_TOKEN = 128258 # <|endoftranscript|>
AUDIO_TOKEN_OFFSET = 128266 # Offset zum Zurückrechnen
BLOCK_TOKENS = 7 # SNAC erwartet 7 Audio‑Tokens pro Block
CHUNK_TOKENS = 50 # Anzahl neuer Tokens pro Generate‑Runde
# — FastAPI instanziieren —
app = FastAPI()
# — Damit GET / nicht 404 wirft —
@app.get("/")
async def read_root():
return {"message": "Orpheus TTS Server ist live 🎙️"}
# — Modelle bei Startup laden —
@app.on_event("startup")
async def load_models():
global tokenizer, model, snac
# SNAC laden
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# TTS‑LM
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.bfloat16 if device=="cuda" else None,
low_cpu_mem_usage=True
)
model.config.pad_token_id = EOS_TOKEN
# — Eingabe aufbereiten —
def prepare_inputs(text: str, voice: str):
prompt = f"{voice}: {text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
start = torch.tensor([[START_MARKER]], device=device)
end = torch.tensor([[128009, EOS_TOKEN]], device=device)
ids = torch.cat([start, input_ids, end], dim=1)
attn_mask = torch.ones_like(ids)
return ids, attn_mask
# — Aus 7 Audio‑Tokens ein PCM‑Block erzeugen —
def decode_block(block: list[int]) -> bytes:
l1, l2, l3 = [], [], []
b = block
l1.append(b[0])
l2.append(b[1] - 4096)
l3.append(b[2] - 2*4096)
l3.append(b[3] - 3*4096)
l2.append(b[4] - 4*4096)
l3.append(b[5] - 5*4096)
l3.append(b[6] - 6*4096)
codes = [
torch.tensor(l1, device=device).unsqueeze(0),
torch.tensor(l2, device=device).unsqueeze(0),
torch.tensor(l3, device=device).unsqueeze(0),
]
audio = snac.decode(codes).squeeze().cpu().numpy()
pcm16 = (audio * 32767).astype("int16").tobytes()
return pcm16
# — Generator: kleine Chunks token‑weise erzeugen und block‑weise dekodieren —
async def generate_and_stream(ws: WebSocket, ids, attn_mask):
buffer: list[int] = []
past_kvs = None
while True:
# wir rufen model.generate in Häppchen auf
outputs = model.generate(
input_ids = ids if past_kvs is None else None,
attention_mask = attn_mask if past_kvs is None else None,
past_key_values= past_kvs,
use_cache = True,
max_new_tokens = CHUNK_TOKENS,
do_sample = True,
temperature = 0.7,
top_p = 0.95,
repetition_penalty = 1.1,
eos_token_id = EOS_TOKEN,
pad_token_id = EOS_TOKEN,
return_dict_in_generate = True,
output_scores = False,
)
# update past_kvs
past_kvs = outputs.past_key_values
# erhalte nur die gerade neu generierten Token
seq = outputs.sequences[0]
new_tokens = seq[-CHUNK_TOKENS:].tolist() if past_kvs is not None else seq[ids.shape[-1]:].tolist()
for tok in new_tokens:
# Neustart bei erneutem START‑Marker
if tok == RESTART_MARKER:
buffer = []
continue
# Ende
if tok == EOS_TOKEN:
return
# Audio‑Code berechnen
buffer.append(tok - AUDIO_TOKEN_OFFSET)
# sobald 7 Audio‑Tokens, dekodieren und streamen
if len(buffer) >= BLOCK_TOKENS:
block = buffer[:BLOCK_TOKENS]
buffer = buffer[BLOCK_TOKENS:]
pcm = decode_block(block)
await ws.send_bytes(pcm)
# — WebSocket‑Endpoint für TTS Streaming —
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
data = await ws.receive_text()
req = json.loads(data)
text = req.get("text", "")
voice = req.get("voice", "Jakob")
ids, attn_mask = prepare_inputs(text, voice)
await generate_and_stream(ws, ids, attn_mask)
await ws.close()
except WebSocketDisconnect:
pass
except Exception as e:
print("Error in /ws/tts:", e)
await ws.close(code=1011)
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)