Tomtom84's picture
Update app.py
a3af518 verified
raw
history blame
4.49 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
# — HF‑Token & Login —
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
# — Device wählen —
device = "cuda" if torch.cuda.is_available() else "cpu"
# — FastAPI instanziieren —
app = FastAPI()
# — Hello‑Route, damit GET / nicht 404 wirft —
@app.get("/")
async def read_root():
return {"message": "Hello, world!"}
# — Modelle bei Startup laden —
@app.on_event("startup")
async def load_models():
global tokenizer, model, snac
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
tokenizer = AutoTokenizer.from_pretrained(REPO)
model = AutoModelForCausalLM.from_pretrained(
REPO,
device_map="auto",
torch_dtype=torch.bfloat16 if device == "cuda" else None,
low_cpu_mem_usage=True
)
# Für pad-token fallback auf eos
model.config.pad_token_id = model.config.eos_token_id
# — Hilfsfunktionen —
START_TOKEN = 128259
END_TOKENS = [128009, 128260]
RESET_TOKEN = 128257
AUDIO_OFFSET = 128266
EOS_TOKEN = model.config.eos_token_id if 'model' in globals() else 128258
def prepare_inputs(text: str, voice: str):
prompt = f"{voice}: {text}"
ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
start = torch.tensor([[START_TOKEN]], device=device)
end = torch.tensor([END_TOKENS], device=device)
input_ids = torch.cat([start, ids, end], dim=1)
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
def decode_block(block: list[int]):
# aus genau 7 Audio‑Codes ein PCM‑Byte‑Block bauen
l1, l2, l3 = [], [], []
b = block
l1.append(b[0])
l2.append(b[1] - 4096)
l3.append(b[2] - 2*4096)
l3.append(b[3] - 3*4096)
l2.append(b[4] - 4*4096)
l3.append(b[5] - 5*4096)
l3.append(b[6] - 6*4096)
codes = [
torch.tensor(l1, device=device).unsqueeze(0),
torch.tensor(l2, device=device).unsqueeze(0),
torch.tensor(l3, device=device).unsqueeze(0),
]
audio = snac.decode(codes).squeeze().cpu().numpy()
return (audio * 32767).astype("int16").tobytes()
# — WebSocket‑Endpoint für TTS Streaming —
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
msg = await ws.receive_text()
req = json.loads(msg)
text = req.get("text", "")
voice = req.get("voice", "Jakob")
input_ids, attention_mask = prepare_inputs(text, voice)
past_kvs = None
collected = []
# Token‑für‑Token mit eigener Sampling‑Schleife
while True:
out = model(
input_ids=input_ids if past_kvs is None else None,
attention_mask=attention_mask if past_kvs is None else None,
past_key_values=past_kvs,
use_cache=True,
)
logits = out.logits[:, -1, :]
past_kvs = out.past_key_values
# Sampling
probs = torch.softmax(logits, dim=-1)
nxt = torch.multinomial(probs, num_samples=1).item()
# EOS → fertig
if nxt == EOS_TOKEN:
break
# RESET → alte Sammlung verwerfen
if nxt == RESET_TOKEN:
collected = []
# und input_ids für nächsten Durchlauf auf None setzen
input_ids = None
attention_mask = None
continue
# Audio‑Code abziehen & sammeln
collected.append(nxt - AUDIO_OFFSET)
# jede 7 Codes → dekodieren & streamen
if len(collected) == 7:
pcm = decode_block(collected)
collected = []
await ws.send_bytes(pcm)
# nur beim allerersten Schritt mit IDs arbeiten
input_ids = None
attention_mask = None
# Stream sauber beenden
await ws.close()
except WebSocketDisconnect:
# Client hat Disconnect gemacht → nichts tun
pass
except Exception as e:
# auf Fehler 1011 senden
print("Error in /ws/tts:", e)
await ws.close(code=1011)