|
|
|
import os, json, asyncio, torch |
|
from fastapi import FastAPI, WebSocket, WebSocketDisconnect |
|
from huggingface_hub import login |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessor |
|
from snac import SNAC |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if HF_TOKEN: |
|
login(HF_TOKEN) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
torch.backends.cuda.enable_flash_sdp(False) |
|
|
|
|
|
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_synthetic-v0.1" |
|
CHUNK_TOKENS = 50 |
|
START_TOKEN = 128259 |
|
NEW_BLOCK_TOKEN = 128257 |
|
EOS_TOKEN = 128258 |
|
AUDIO_BASE = 128266 |
|
VALID_AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096) |
|
|
|
|
|
class AudioLogitMask(LogitsProcessor): |
|
def __init__(self, allowed_ids: torch.Tensor): |
|
super().__init__() |
|
self.allowed = allowed_ids |
|
|
|
def __call__(self, input_ids, scores): |
|
|
|
mask = torch.full_like(scores, float("-inf")) |
|
mask[:, self.allowed] = 0 |
|
return scores + mask |
|
|
|
ALLOWED_IDS = torch.cat( |
|
[VALID_AUDIO_IDS, torch.tensor([NEW_BLOCK_TOKEN, EOS_TOKEN])] |
|
).to(device) |
|
MASKER = AudioLogitMask(ALLOWED_IDS) |
|
|
|
|
|
app = FastAPI() |
|
|
|
@app.get("/") |
|
async def ping(): |
|
return {"msg": "OrpheusβTTS OK"} |
|
|
|
@app.on_event("startup") |
|
async def load_models(): |
|
global tok, model, snac |
|
tok = AutoTokenizer.from_pretrained(REPO) |
|
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
REPO, |
|
low_cpu_mem_usage=True, |
|
device_map={"": 0} if device == "cuda" else None, |
|
torch_dtype=torch.bfloat16 if device == "cuda" else None, |
|
) |
|
model.config.pad_token_id = model.config.eos_token_id |
|
model.config.use_cache = True |
|
|
|
|
|
def build_prompt(text:str, voice:str): |
|
base = f"{voice}: {text}" |
|
ids = tok(base, return_tensors="pt").input_ids.to(device) |
|
ids = torch.cat( |
|
[ |
|
torch.tensor([[START_TOKEN]], device=device), |
|
ids, |
|
torch.tensor([[128009, 128260]], device=device), |
|
], |
|
1, |
|
) |
|
return ids, torch.ones_like(ids) |
|
|
|
def decode_snac(block7:list[int])->bytes: |
|
l1,l2,l3=[],[],[] |
|
b=block7 |
|
l1.append(b[0]) |
|
l2.append(b[1]-4096) |
|
l3.extend([b[2]-8192, b[3]-12288]) |
|
l2.append(b[4]-16384) |
|
l3.extend([b[5]-20480, b[6]-24576]) |
|
|
|
codes=[torch.tensor(x,device=device).unsqueeze(0) |
|
for x in (l1,l2,l3)] |
|
audio=snac.decode(codes).squeeze().cpu().numpy() |
|
return (audio*32767).astype("int16").tobytes() |
|
|
|
|
|
@app.websocket("/ws/tts") |
|
async def tts(ws: WebSocket): |
|
await ws.accept() |
|
try: |
|
req = json.loads(await ws.receive_text()) |
|
text = req.get("text","") |
|
voice = req.get("voice","Jakob") |
|
|
|
ids, attn = build_prompt(text, voice) |
|
past = None |
|
buf = [] |
|
|
|
while True: |
|
out = model.generate( |
|
input_ids=ids if past is None else None, |
|
attention_mask=attn if past is None else None, |
|
past_key_values=past, |
|
max_new_tokens=CHUNK_TOKENS, |
|
logits_processor=[MASKER], |
|
do_sample=True, temperature=0.7, top_p=0.95, |
|
use_cache=True, |
|
return_dict_in_generate=True, |
|
) |
|
past = out.past_key_values |
|
newtok = out.sequences[0,-out.num_generated_tokens:].tolist() |
|
|
|
for t in newtok: |
|
if t==EOS_TOKEN: |
|
raise StopIteration |
|
if t==NEW_BLOCK_TOKEN: |
|
buf.clear(); continue |
|
buf.append(t-AUDIO_BASE) |
|
if len(buf)==7: |
|
await ws.send_bytes(decode_snac(buf)) |
|
buf.clear() |
|
|
|
|
|
ids, attn = None, None |
|
|
|
except (StopIteration, WebSocketDisconnect): |
|
pass |
|
except Exception as e: |
|
print("WSβError:", e) |
|
await ws.close(code=1011) |
|
finally: |
|
if ws.client_state.name!="DISCONNECTED": |
|
await ws.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run("app:app", host="0.0.0.0", port=7860) |
|
|