Tomtom84's picture
Update app.py
c70d8eb verified
raw
history blame
5.2 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
# — HF‑Token & Login —
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
# — Device auswählen —
device = "cuda" if torch.cuda.is_available() else "cpu"
# — FastAPI instanziieren —
app = FastAPI()
# — Hello‑Route, damit GET / nicht 404 gibt —
@app.get("/")
async def read_root():
return {"message": "Hello, world!"}
# — Modelle beim Startup laden —
@app.on_event("startup")
async def load_models():
global tokenizer, model, snac
# SNAC laden
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
# TTS‑Modell laden
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto" if device=="cuda" else None,
torch_dtype=torch.bfloat16 if device=="cuda" else None,
low_cpu_mem_usage=True
).to(device)
model.config.pad_token_id = model.config.eos_token_id
# — Input‑Vorbereitung —
def prepare_inputs(text: str, voice: str):
prompt = f"{voice}: {text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
ids = torch.cat([start, input_ids, end], dim=1)
mask = torch.ones_like(ids, device=device)
return ids, mask
# — SNAC‑Dekodierung eines 7‑Token‑Blocks →
def decode_block(tokens: list[int]) -> bytes:
l1, l2, l3 = [], [], []
b = tokens
l1.append(b[0])
l2.append(b[1]-4096)
l3.append(b[2]-2*4096)
l3.append(b[3]-3*4096)
l2.append(b[4]-4*4096)
l3.append(b[5]-5*4096)
l3.append(b[6]-6*4096)
codes = [
torch.tensor(l1, device=device).unsqueeze(0),
torch.tensor(l2, device=device).unsqueeze(0),
torch.tensor(l3, device=device).unsqueeze(0),
]
audio = snac.decode(codes).squeeze().cpu().numpy()
return (audio * 32767).astype("int16").tobytes()
# — WebSocket‑Endpoint mit Chunked‑Generate (max_new_tokens=50) —
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
# 1) Anfrage einlesen
msg = await ws.receive_text()
req = json.loads(msg)
text = req.get("text", "")
voice = req.get("voice", "Jakob")
# 2) Inputs bauen
input_ids, attention_mask = prepare_inputs(text, voice)
past_kvs = None
buffer_codes: list[int] = []
# 3) Chunk‑Generate‑Loop
chunk_size = 50
eos_id = model.config.eos_token_id
# Wir tracken bisher erzeugte Länge, um abzugrenzen, was neu ist
prev_len = 0
while True:
out = model.generate(
input_ids = input_ids if past_kvs is None else None,
attention_mask=attention_mask if past_kvs is None else None,
max_new_tokens=chunk_size,
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1,
eos_token_id=eos_id,
use_cache=True,
return_dict_in_generate=True,
output_scores=False,
past_key_values=past_kvs
)
# Update past_kvs und sequences
past_kvs = out.past_key_values
seqs = out.sequences # (1, total_length)
total_len = seqs.shape[1]
# 4) Neue Tokens extrahieren
new_tokens = seqs[0, prev_len:total_len].tolist()
prev_len = total_len
# 5) Jeden neuen Token aufbereiten
for tok in new_tokens:
if tok == eos_id:
# Ende
new_tokens = [] # clean up
break
if tok == 128257:
buffer_codes.clear()
continue
# offset und puffern
buffer_codes.append(tok - 128266)
# sobald 7 Codes gesammelt, dekodieren & senden
if len(buffer_codes) >= 7:
block = buffer_codes[:7]
buffer_codes = buffer_codes[7:]
pcm = decode_block(block)
await ws.send_bytes(pcm)
# 6) Abbruch, wenn EOS im Chunk war
if eos_id in new_tokens:
break
# Inputs für nächsten Durchgang nur beim ersten Mal
input_ids = attention_mask = None
# 7) Zum Schluss sauber schließen
await ws.close()
except WebSocketDisconnect:
return
except Exception as e:
print("Error in /ws/tts:", e)
await ws.close(code=1011)
# — Main für lokalen Test —
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)