|
import os |
|
import json |
|
import asyncio |
|
import torch |
|
from fastapi import FastAPI, WebSocket, WebSocketDisconnect |
|
from dotenv import load_dotenv |
|
from snac import SNAC |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from huggingface_hub import login, snapshot_download |
|
|
|
|
|
load_dotenv() |
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if HF_TOKEN: |
|
login(token=HF_TOKEN) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
print("Loading SNAC model...") |
|
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) |
|
|
|
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" |
|
snapshot_download( |
|
repo_id=model_name, |
|
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"], |
|
ignore_patterns=[ |
|
"optimizer.pt", "pytorch_model.bin", "training_args.bin", |
|
"scheduler.pt", "tokenizer.json", "tokenizer_config.json", |
|
"special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*" |
|
] |
|
) |
|
|
|
print("Loading Orpheus model...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, torch_dtype=torch.bfloat16 |
|
).to(device) |
|
model.config.pad_token_id = model.config.eos_token_id |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
AUDIO_TOKEN_OFFSET = 128266 |
|
START_TOKEN = 128259 |
|
SOS_TOKEN = 128257 |
|
EOS_TOKEN = 128258 |
|
|
|
|
|
def process_prompt(text: str, voice: str): |
|
prompt = f"{voice}: {text}" |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) |
|
start = torch.tensor([[START_TOKEN]], dtype=torch.int64, device=device) |
|
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device) |
|
ids = torch.cat([start, input_ids, end], dim=1) |
|
mask = torch.ones_like(ids, dtype=torch.int64, device=device) |
|
return ids, mask |
|
|
|
def redistribute_codes(block: list[int], snac_model: SNAC): |
|
|
|
l1, l2, l3 = [], [], [] |
|
for i in range(len(block)//7): |
|
b = block[7*i:7*i+7] |
|
l1.append(b[0]) |
|
l2.append(b[1] - 4096) |
|
l3.append(b[2] - 2*4096) |
|
l3.append(b[3] - 3*4096) |
|
l2.append(b[4] - 4*4096) |
|
l3.append(b[5] - 5*4096) |
|
l3.append(b[6] - 6*4096) |
|
dev = next(snac_model.parameters()).device |
|
codes = [ |
|
torch.tensor(l1, device=dev).unsqueeze(0), |
|
torch.tensor(l2, device=dev).unsqueeze(0), |
|
torch.tensor(l3, device=dev).unsqueeze(0), |
|
] |
|
audio = snac_model.decode(codes) |
|
return audio.squeeze().cpu().numpy() |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "Hallo Welt"} |
|
|
|
|
|
@app.websocket("/ws/tts") |
|
async def tts_ws(ws: WebSocket): |
|
await ws.accept() |
|
try: |
|
while True: |
|
|
|
raw = await ws.receive_text() |
|
req = json.loads(raw) |
|
text, voice = req.get("text", ""), req.get("voice", "Jakob") |
|
ids, mask = process_prompt(text, voice) |
|
|
|
past_kv = None |
|
collected = [] |
|
|
|
|
|
with torch.no_grad(): |
|
for _ in range(2000): |
|
out = model( |
|
input_ids=ids if past_kv is None else None, |
|
attention_mask=mask if past_kv is None else None, |
|
past_key_values=past_kv, |
|
use_cache=True, |
|
) |
|
logits = out.logits[:, -1, :] |
|
next_id = torch.multinomial(torch.softmax(logits, dim=-1), num_samples=1) |
|
past_kv = out.past_key_values |
|
|
|
token = next_id.item() |
|
|
|
if token == EOS_TOKEN: |
|
break |
|
|
|
if token == SOS_TOKEN: |
|
collected = [] |
|
continue |
|
|
|
|
|
collected.append(token - AUDIO_TOKEN_OFFSET) |
|
|
|
|
|
if len(collected) >= 7: |
|
block = collected[:7] |
|
collected = collected[7:] |
|
audio_np = redistribute_codes(block, snac) |
|
pcm16 = (audio_np * 32767).astype("int16").tobytes() |
|
await ws.send_bytes(pcm16) |
|
|
|
|
|
ids = None |
|
mask = None |
|
|
|
|
|
await ws.send_text(json.dumps({"event": "eos"})) |
|
|
|
except WebSocketDisconnect: |
|
print("Client disconnected") |
|
except Exception as e: |
|
print("Error in /ws/tts:", e) |
|
await ws.close(code=1011) |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run("app:app", host="0.0.0.0", port=7860) |
|
|