Create orpheus-tts/engine_class.py
Browse files- orpheus-tts/engine_class.py +146 -0
orpheus-tts/engine_class.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import threading
|
7 |
+
import queue
|
8 |
+
from .decoder import tokens_decoder_sync
|
9 |
+
|
10 |
+
class OrpheusModel:
|
11 |
+
def __init__(self, model_name, dtype=torch.bfloat16, tokenizer=None, **engine_kwargs):
|
12 |
+
self.model_name = self._map_model_params(model_name)
|
13 |
+
self.dtype = dtype
|
14 |
+
self.engine_kwargs = engine_kwargs # vLLM engine kwargs
|
15 |
+
self.engine = self._setup_engine()
|
16 |
+
# Available voices for German Kartoffel model
|
17 |
+
if "german" in model_name.lower() or "kartoffel" in model_name.lower():
|
18 |
+
self.available_voices = ["Jakob", "Anton", "Julian", "Sophie", "Marie", "Mia"]
|
19 |
+
else:
|
20 |
+
# Original English voices as fallback
|
21 |
+
self.available_voices = ["zoe", "zac", "jess", "leo", "mia", "julia", "leah", "tara"]
|
22 |
+
|
23 |
+
# Use provided tokenizer path or default to model_name
|
24 |
+
# For German models, try the model itself first, then fallback to original tokenizer
|
25 |
+
if tokenizer:
|
26 |
+
tokenizer_path = tokenizer
|
27 |
+
elif "german" in model_name.lower() or "kartoffel" in model_name.lower():
|
28 |
+
tokenizer_path = model_name # Try using the same model as tokenizer
|
29 |
+
else:
|
30 |
+
tokenizer_path = 'canopylabs/orpheus-3b-0.1-pretrained' # Original fallback
|
31 |
+
|
32 |
+
self.tokenizer = self._load_tokenizer(tokenizer_path)
|
33 |
+
|
34 |
+
def _load_tokenizer(self, tokenizer_path):
|
35 |
+
"""Load tokenizer from local path or HuggingFace hub"""
|
36 |
+
try:
|
37 |
+
# Check if tokenizer_path is a local directory
|
38 |
+
if os.path.isdir(tokenizer_path):
|
39 |
+
return AutoTokenizer.from_pretrained(tokenizer_path, local_files_only=True)
|
40 |
+
else:
|
41 |
+
return AutoTokenizer.from_pretrained(tokenizer_path)
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading tokenizer: {e}")
|
44 |
+
print(f"Falling back to default tokenizer")
|
45 |
+
return AutoTokenizer.from_pretrained("gpt2")
|
46 |
+
|
47 |
+
def _map_model_params(self, model_name):
|
48 |
+
model_map = {
|
49 |
+
# "nano-150m":{
|
50 |
+
# "repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
51 |
+
# },
|
52 |
+
# "micro-400m":{
|
53 |
+
# "repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
54 |
+
# },
|
55 |
+
# "small-1b":{
|
56 |
+
# "repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
57 |
+
# },
|
58 |
+
"medium-3b":{
|
59 |
+
"repo_id": "canopylabs/orpheus-tts-0.1-finetune-prod",
|
60 |
+
},
|
61 |
+
}
|
62 |
+
unsupported_models = ["nano-150m", "micro-400m", "small-1b"]
|
63 |
+
if (model_name in unsupported_models):
|
64 |
+
raise ValueError(f"Model {model_name} is not supported. Only medium-3b is supported, small, micro and nano models will be released very soon")
|
65 |
+
elif model_name in model_map:
|
66 |
+
return model_name[model_name]["repo_id"]
|
67 |
+
else:
|
68 |
+
return model_name
|
69 |
+
|
70 |
+
def _setup_engine(self):
|
71 |
+
engine_args = AsyncEngineArgs(
|
72 |
+
model=self.model_name,
|
73 |
+
dtype=self.dtype,
|
74 |
+
**self.engine_kwargs
|
75 |
+
)
|
76 |
+
|
77 |
+
return AsyncLLMEngine.from_engine_args(engine_args)
|
78 |
+
|
79 |
+
def validate_voice(self, voice):
|
80 |
+
if voice:
|
81 |
+
if voice not in self.engine.available_voices:
|
82 |
+
raise ValueError(f"Voice {voice} is not available for model {self.model_name}")
|
83 |
+
|
84 |
+
def _format_prompt(self, prompt, voice="tara", model_type="larger"):
|
85 |
+
if model_type == "smaller":
|
86 |
+
if voice:
|
87 |
+
return f"<custom_token_3>{prompt}[{voice}]<custom_token_4><custom_token_5>"
|
88 |
+
else:
|
89 |
+
return f"<custom_token_3>{prompt}<custom_token_4><custom_token_5>"
|
90 |
+
else:
|
91 |
+
if voice:
|
92 |
+
adapted_prompt = f"{voice}: {prompt}"
|
93 |
+
prompt_tokens = self.tokenizer(adapted_prompt, return_tensors="pt")
|
94 |
+
start_token = torch.tensor([[ 128259]], dtype=torch.int64)
|
95 |
+
end_tokens = torch.tensor([[128009, 128260, 128261, 128257]], dtype=torch.int64)
|
96 |
+
all_input_ids = torch.cat([start_token, prompt_tokens.input_ids, end_tokens], dim=1)
|
97 |
+
prompt_string = self.tokenizer.decode(all_input_ids[0])
|
98 |
+
return prompt_string
|
99 |
+
else:
|
100 |
+
prompt_tokens = self.tokenizer(prompt, return_tensors="pt")
|
101 |
+
start_token = torch.tensor([[ 128259]], dtype=torch.int64)
|
102 |
+
end_tokens = torch.tensor([[128009, 128260, 128261, 128257]], dtype=torch.int64)
|
103 |
+
all_input_ids = torch.cat([start_token, prompt_tokens.input_ids, end_tokens], dim=1)
|
104 |
+
prompt_string = self.tokenizer.decode(all_input_ids[0])
|
105 |
+
return prompt_string
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
def generate_tokens_sync(self, prompt, voice=None, request_id="req-001", temperature=0.6, top_p=0.8, max_tokens=1200, stop_token_ids = [49158], repetition_penalty=1.3):
|
111 |
+
prompt_string = self._format_prompt(prompt, voice)
|
112 |
+
print(prompt)
|
113 |
+
sampling_params = SamplingParams(
|
114 |
+
temperature=temperature,
|
115 |
+
top_p=top_p,
|
116 |
+
max_tokens=max_tokens, # Adjust max_tokens as needed.
|
117 |
+
stop_token_ids = stop_token_ids,
|
118 |
+
repetition_penalty=repetition_penalty,
|
119 |
+
)
|
120 |
+
|
121 |
+
token_queue = queue.Queue()
|
122 |
+
|
123 |
+
async def async_producer():
|
124 |
+
async for result in self.engine.generate(prompt=prompt_string, sampling_params=sampling_params, request_id=request_id):
|
125 |
+
# Place each token text into the queue.
|
126 |
+
token_queue.put(result.outputs[0].text)
|
127 |
+
token_queue.put(None) # Sentinel to indicate completion.
|
128 |
+
|
129 |
+
def run_async():
|
130 |
+
asyncio.run(async_producer())
|
131 |
+
|
132 |
+
thread = threading.Thread(target=run_async)
|
133 |
+
thread.start()
|
134 |
+
|
135 |
+
while True:
|
136 |
+
token = token_queue.get()
|
137 |
+
if token is None:
|
138 |
+
break
|
139 |
+
yield token
|
140 |
+
|
141 |
+
thread.join()
|
142 |
+
|
143 |
+
def generate_speech(self, **kwargs):
|
144 |
+
return tokens_decoder_sync(self.generate_tokens_sync(**kwargs))
|
145 |
+
|
146 |
+
|