Update Dockerfile
Browse files- Dockerfile +19 -43
Dockerfile
CHANGED
@@ -1,57 +1,33 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# Optional: zuerst llama-cpp-python bauen (cachebar)
|
4 |
-
#RUN pip install --no-cache-dir --no-build-isolation llama-cpp-python
|
5 |
-
# Danach: outetts (zieht llama-cpp-python nicht erneut)
|
6 |
-
#RUN pip install --no-cache-dir --no-build-isolation outetts
|
7 |
|
|
|
8 |
RUN apt-get update && \
|
9 |
-
apt-get install -y \
|
10 |
-
bash \
|
11 |
-
git git-lfs \
|
12 |
-
wget curl procps gnupg \
|
13 |
-
build-essential cmake \
|
14 |
-
htop vim nano && \
|
15 |
rm -rf /var/lib/apt/lists/*
|
16 |
|
17 |
-
#
|
18 |
-
RUN wget https://developer.download.nvidia.com/compute/cuda/repos/debian12/x86_64/cuda-keyring_1.1-1_all.deb && \
|
19 |
-
dpkg -i cuda-keyring_1.1-1_all.deb && \
|
20 |
-
apt-get update && \
|
21 |
-
apt-get -y install cuda
|
22 |
-
|
23 |
-
# CUDA ENV-Variablen setzen
|
24 |
-
ENV PATH=/usr/local/cuda/bin:${PATH}
|
25 |
-
ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH}
|
26 |
-
ENV CUDAToolkit_ROOT=/usr/local/cuda
|
27 |
-
ENV CMAKE_ARGS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=86"
|
28 |
-
|
29 |
RUN useradd -m -u 1000 user
|
30 |
USER user
|
31 |
-
ENV PATH="/home/user/.local/bin:$PATH"
|
32 |
-
# ^ when run as `user`, pip installs executables there
|
33 |
-
|
34 |
WORKDIR /app
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
# Wichtig: Isolation deaktivieren für llama-cpp-python Build
|
39 |
-
RUN pip install --upgrade pip
|
40 |
-
|
41 |
-
# Manuell Build-Werkzeuge bereitstellen
|
42 |
RUN pip install --upgrade pip && \
|
43 |
-
pip install
|
44 |
-
setuptools \
|
45 |
-
wheel \
|
46 |
-
packaging \
|
47 |
-
ninja \
|
48 |
-
scikit-build-core[pyproject]
|
49 |
|
50 |
-
#
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
#CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", , "--ws", "auto", "--allow-websocket-origin", "*"]
|
57 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
1 |
+
# GPU‑fertige Basis mit Python 3.10, CUDA 11.8, cuDNN 8
|
2 |
+
FROM pytorch/pytorch:2.2.2-cuda11.8-cudnn8-runtime
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# System‑Tools (schlank halten!)
|
5 |
RUN apt-get update && \
|
6 |
+
apt-get install -y git-lfs build-essential && \
|
|
|
|
|
|
|
|
|
|
|
7 |
rm -rf /var/lib/apt/lists/*
|
8 |
|
9 |
+
# Non‑root‑User, weil Spaces das mögen
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
RUN useradd -m -u 1000 user
|
11 |
USER user
|
|
|
|
|
|
|
12 |
WORKDIR /app
|
13 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
14 |
+
ENV HF_HOME=/app/.cache # HF‑Cache in deinem Schreibverzeichnis
|
15 |
|
16 |
+
# Python-Abhängigkeiten
|
17 |
+
COPY --chown=user requirements.txt .
|
|
|
|
|
|
|
|
|
18 |
RUN pip install --upgrade pip && \
|
19 |
+
pip install --no-cache-dir -r requirements.txt
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Optional: flash‑attn (Ampere 86 wird erkannt, Wheel vorhanden)
|
22 |
+
RUN pip install --no-cache-dir flash-attn==2.5.2 --no-build-isolation
|
23 |
|
24 |
+
# Mount das geheime HF‑Token beim Build:
|
25 |
+
# Settings → Secrets → Name: HF_TOKEN (scope: "read")
|
26 |
+
#ARG HF_TOKEN
|
27 |
+
#RUN --mount=type=secret,id=HF_TOKEN \
|
28 |
+
# echo "machine huggingface.co login __token__ password $(cat /run/secrets/HF_TOKEN)" > ~/.netrc
|
29 |
|
30 |
+
# App‑Code
|
31 |
+
COPY --chown=user . /app
|
32 |
|
|
|
33 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|