Create kartoffel_decoder.py
Browse files- orpheus-tts/kartoffel_decoder.py +196 -0
orpheus-tts/kartoffel_decoder.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from snac import SNAC
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import asyncio
|
5 |
+
import threading
|
6 |
+
import queue
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Kartoffel-spezifische Konstanten
|
10 |
+
CODE_TOKEN_OFFSET = 128266
|
11 |
+
CODE_START_TOKEN_ID = 128257
|
12 |
+
CODE_REMOVE_TOKEN_ID = 128258
|
13 |
+
|
14 |
+
print("DEBUG KARTOFFEL: Loading SNAC model...")
|
15 |
+
model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
|
16 |
+
|
17 |
+
snac_device = os.environ.get("SNAC_DEVICE", "cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
model = model.to(snac_device)
|
19 |
+
if snac_device == "cuda":
|
20 |
+
model = model.half()
|
21 |
+
model.eval()
|
22 |
+
print(f"DEBUG KARTOFFEL: SNAC model loaded successfully on device: {snac_device}")
|
23 |
+
|
24 |
+
def redistribute_codes_kartoffel(code_list):
|
25 |
+
"""Kartoffel-spezifische Code-Redistribution"""
|
26 |
+
if not code_list:
|
27 |
+
return torch.tensor([[]], device=snac_device, dtype=torch.float32)
|
28 |
+
|
29 |
+
num_codes = len(code_list)
|
30 |
+
num_groups = num_codes // 7
|
31 |
+
if num_groups == 0:
|
32 |
+
return torch.tensor([[]], device=snac_device, dtype=torch.float32)
|
33 |
+
|
34 |
+
# Nur vollständige 7er-Gruppen verwenden
|
35 |
+
code_list = code_list[:num_groups * 7]
|
36 |
+
|
37 |
+
layer_1, layer_2, layer_3 = [], [], []
|
38 |
+
for i in range(num_groups):
|
39 |
+
base_idx = 7 * i
|
40 |
+
try:
|
41 |
+
layer_1.append(code_list[base_idx])
|
42 |
+
layer_2.append(code_list[base_idx + 1] - 4096)
|
43 |
+
layer_3.append(code_list[base_idx + 2] - (2 * 4096))
|
44 |
+
layer_3.append(code_list[base_idx + 3] - (3 * 4096))
|
45 |
+
layer_2.append(code_list[base_idx + 4] - (4 * 4096))
|
46 |
+
layer_3.append(code_list[base_idx + 5] - (5 * 4096))
|
47 |
+
layer_3.append(code_list[base_idx + 6] - (6 * 4096))
|
48 |
+
except IndexError:
|
49 |
+
print(f"DEBUG KARTOFFEL: IndexError during code redistribution at group {i}. Skipping group.")
|
50 |
+
break
|
51 |
+
|
52 |
+
if not layer_1:
|
53 |
+
return torch.tensor([[]], device=snac_device, dtype=torch.float32)
|
54 |
+
|
55 |
+
codes = [
|
56 |
+
torch.tensor(layer_1, device=snac_device).unsqueeze(0),
|
57 |
+
torch.tensor(layer_2, device=snac_device).unsqueeze(0),
|
58 |
+
torch.tensor(layer_3, device=snac_device).unsqueeze(0),
|
59 |
+
]
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
audio_hat = model.decode(codes)
|
63 |
+
return audio_hat
|
64 |
+
|
65 |
+
def convert_to_audio_kartoffel(audio_tensor):
|
66 |
+
"""Konvertiert Audio-Tensor zu PCM16-Bytes"""
|
67 |
+
if audio_tensor is None or audio_tensor.numel() == 0:
|
68 |
+
return b''
|
69 |
+
|
70 |
+
# Audio zu PCM16 konvertieren
|
71 |
+
audio_numpy = (audio_tensor.squeeze().cpu().to(torch.float32).numpy() * 32767)
|
72 |
+
audio_numpy = np.clip(audio_numpy, -32768, 32767).astype(np.int16)
|
73 |
+
return audio_numpy.tobytes()
|
74 |
+
|
75 |
+
def extract_kartoffel_tokens(token_text, tokenizer):
|
76 |
+
"""Extrahiert Audio-Token-IDs aus dem generierten Text"""
|
77 |
+
try:
|
78 |
+
# Text zu Token-IDs konvertieren
|
79 |
+
token_ids = tokenizer.encode(token_text)
|
80 |
+
|
81 |
+
# Nach Start-Token suchen
|
82 |
+
start_idx = -1
|
83 |
+
for i, token_id in enumerate(token_ids):
|
84 |
+
if token_id == CODE_START_TOKEN_ID:
|
85 |
+
start_idx = i
|
86 |
+
break
|
87 |
+
|
88 |
+
if start_idx == -1:
|
89 |
+
return []
|
90 |
+
|
91 |
+
# Audio-Tokens extrahieren (nach Start-Token)
|
92 |
+
potential_code_tokens = token_ids[start_idx + 1:]
|
93 |
+
|
94 |
+
# Nur gültige Audio-Tokens (>= CODE_TOKEN_OFFSET, nicht REMOVE_TOKEN)
|
95 |
+
valid_raw_codes = [
|
96 |
+
token for token in potential_code_tokens
|
97 |
+
if token != CODE_REMOVE_TOKEN_ID and token >= CODE_TOKEN_OFFSET
|
98 |
+
]
|
99 |
+
|
100 |
+
# Offset abziehen
|
101 |
+
valid_codes = [token - CODE_TOKEN_OFFSET for token in valid_raw_codes]
|
102 |
+
|
103 |
+
return valid_codes
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
print(f"DEBUG KARTOFFEL: Error extracting tokens: {e}")
|
107 |
+
return []
|
108 |
+
|
109 |
+
async def tokens_decoder_kartoffel(token_gen, tokenizer):
|
110 |
+
"""Kartoffel-spezifischer Token-Decoder"""
|
111 |
+
buffer = []
|
112 |
+
accumulated_text = ""
|
113 |
+
processed_count = 0
|
114 |
+
chunk_size = 28 # 4 Gruppen à 7 Tokens
|
115 |
+
|
116 |
+
print("DEBUG KARTOFFEL: Starting token decoding")
|
117 |
+
|
118 |
+
async for token_text in token_gen:
|
119 |
+
accumulated_text += token_text
|
120 |
+
print(f"DEBUG KARTOFFEL: Accumulated text length: {len(accumulated_text)}")
|
121 |
+
|
122 |
+
# Audio-Tokens aus dem akkumulierten Text extrahieren
|
123 |
+
valid_codes = extract_kartoffel_tokens(accumulated_text, tokenizer)
|
124 |
+
|
125 |
+
if len(valid_codes) > processed_count:
|
126 |
+
new_codes = valid_codes[processed_count:]
|
127 |
+
buffer.extend(new_codes)
|
128 |
+
print(f"DEBUG KARTOFFEL: Added {len(new_codes)} new codes. Buffer size: {len(buffer)}")
|
129 |
+
|
130 |
+
# Wenn genug Codes für Audio-Generation vorhanden
|
131 |
+
while len(buffer) >= chunk_size:
|
132 |
+
codes_to_process = buffer[:chunk_size]
|
133 |
+
buffer = buffer[chunk_size:]
|
134 |
+
processed_count += chunk_size
|
135 |
+
|
136 |
+
print(f"DEBUG KARTOFFEL: Processing {len(codes_to_process)} codes")
|
137 |
+
|
138 |
+
# Audio generieren
|
139 |
+
audio_tensor = redistribute_codes_kartoffel(codes_to_process)
|
140 |
+
audio_bytes = convert_to_audio_kartoffel(audio_tensor)
|
141 |
+
|
142 |
+
if audio_bytes:
|
143 |
+
print(f"DEBUG KARTOFFEL: Generated {len(audio_bytes)} bytes of audio")
|
144 |
+
yield audio_bytes
|
145 |
+
else:
|
146 |
+
print("DEBUG KARTOFFEL: No audio bytes generated")
|
147 |
+
|
148 |
+
# Verbleibende Codes verarbeiten
|
149 |
+
if len(buffer) >= 7: # Mindestens eine vollständige Gruppe
|
150 |
+
final_count = (len(buffer) // 7) * 7
|
151 |
+
final_codes = buffer[:final_count]
|
152 |
+
|
153 |
+
print(f"DEBUG KARTOFFEL: Processing final {len(final_codes)} codes")
|
154 |
+
|
155 |
+
audio_tensor = redistribute_codes_kartoffel(final_codes)
|
156 |
+
audio_bytes = convert_to_audio_kartoffel(audio_tensor)
|
157 |
+
|
158 |
+
if audio_bytes:
|
159 |
+
print(f"DEBUG KARTOFFEL: Generated final {len(audio_bytes)} bytes of audio")
|
160 |
+
yield audio_bytes
|
161 |
+
|
162 |
+
print("DEBUG KARTOFFEL: Token decoding completed")
|
163 |
+
|
164 |
+
def tokens_decoder_kartoffel_sync(syn_token_gen, tokenizer):
|
165 |
+
"""Synchroner Wrapper für den Kartoffel-Decoder"""
|
166 |
+
audio_queue = queue.Queue()
|
167 |
+
|
168 |
+
# Synchronen Generator zu async konvertieren
|
169 |
+
async def async_token_gen():
|
170 |
+
for token in syn_token_gen:
|
171 |
+
yield token
|
172 |
+
|
173 |
+
async def async_producer():
|
174 |
+
try:
|
175 |
+
async for audio_chunk in tokens_decoder_kartoffel(async_token_gen(), tokenizer):
|
176 |
+
audio_queue.put(audio_chunk)
|
177 |
+
except Exception as e:
|
178 |
+
print(f"DEBUG KARTOFFEL: Error in async producer: {e}")
|
179 |
+
import traceback
|
180 |
+
traceback.print_exc()
|
181 |
+
finally:
|
182 |
+
audio_queue.put(None) # Sentinel
|
183 |
+
|
184 |
+
def run_async():
|
185 |
+
asyncio.run(async_producer())
|
186 |
+
|
187 |
+
thread = threading.Thread(target=run_async)
|
188 |
+
thread.start()
|
189 |
+
|
190 |
+
while True:
|
191 |
+
audio = audio_queue.get()
|
192 |
+
if audio is None:
|
193 |
+
break
|
194 |
+
yield audio
|
195 |
+
|
196 |
+
thread.join()
|