File size: 9,497 Bytes
0b5b901
87012a8
4189fe1
9bf14d0
fee868f
d9ea17d
0316ec3
e3958ab
479f253
 
 
2008a3f
1ab029d
325e9ba
e3958ab
 
 
325e9ba
e3958ab
 
 
 
83532d0
f4406f3
e3958ab
 
 
 
479f253
e3958ab
 
 
 
 
 
3d65908
e3958ab
a0cc672
 
 
 
 
e3958ab
 
9bf14d0
0dfc310
9bf14d0
e3958ab
 
9bf14d0
 
e3958ab
5031731
e3958ab
 
0b5b901
 
9bf14d0
5031731
e3958ab
 
bca75ea
d44e840
f63f843
e3958ab
 
 
 
 
 
 
 
 
 
 
b17f5cd
e3958ab
 
0b5b901
7bb84b7
 
 
 
 
e3958ab
9e2fbd8
e3958ab
 
9e2fbd8
e3958ab
0b5b901
 
e3958ab
a8606ac
d44e840
a09ea48
4189fe1
d44e840
e3958ab
 
 
7db0e09
 
325e9ba
 
 
 
7db0e09
fd51bc6
325e9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd51bc6
fee868f
325e9ba
 
fd51bc6
325e9ba
 
 
 
 
 
2a41e43
325e9ba
 
 
fd51bc6
 
 
325e9ba
 
 
 
 
 
 
 
fd51bc6
 
 
325e9ba
 
 
 
 
 
 
 
 
 
bca75ea
5031731
479f253
a09ea48
e3958ab
83532d0
 
5031731
479f253
5031731
 
e3958ab
 
 
 
5031731
e3958ab
a4cfefc
e3958ab
83532d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# app.py ──────────────────────────────────────────────────────────────
import os, json, torch, asyncio
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, DynamicCache # Added StaticCache
from snac import SNAC

# 0) Login + Device ---------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
    login(HF_TOKEN)

device = "cuda" if torch.cuda.is_available() else "cpu"
#torch.backends.cuda.enable_flash_sdp(False)          # PyTorch‑2.2‑Bug

# 1) Konstanten -------------------------------------------------------
REPO           = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
CHUNK_TOKENS   = 50
START_TOKEN    = 128259
NEW_BLOCK      = 128257
EOS_TOKEN      = 128258
AUDIO_BASE     = 128266
AUDIO_SPAN   = 4096 * 7                                # 28 672 Codes
AUDIO_IDS  = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN) # Renamed VALID_AUDIO to AUDIO_IDS

# 2) Logit‑Mask (NEW_BLOCK + Audio; EOS erst nach 1. Block) ----------
class AudioMask(LogitsProcessor):
    def __init__(self, audio_ids: torch.Tensor):
        super().__init__()
        self.allow = torch.cat([
            torch.tensor([NEW_BLOCK], device=audio_ids.device),
            audio_ids
        ])
        self.eos   = torch.tensor([EOS_TOKEN], device=audio_ids.device)
        self.sent_blocks = 0
        self.buffer_pos = 0 # Added buffer position

    def __call__(self, input_ids, scores):
        allow = torch.cat([self.allow, self.eos]) # Reverted masking logic
        mask = torch.full_like(scores, float("-inf"))
        mask[:, allow] = 0
        return scores + mask

# 3) FastAPI Grundgerüst ---------------------------------------------
app = FastAPI()

@app.get("/")
def hello():
    return {"status": "ok"}

@app.on_event("startup")
def load_models():
    global tok, model, snac, masker
    print("⏳ Lade Modelle …", flush=True)

    tok   = AutoTokenizer.from_pretrained(REPO)
    snac  = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
    model = AutoModelForCausalLM.from_pretrained(
        REPO,
        device_map={"": 0} if device == "cuda" else None,
        torch_dtype=torch.bfloat16 if device == "cuda" else None,
        low_cpu_mem_usage=True,
    )
    model.config.pad_token_id = model.config.eos_token_id
    masker = AudioMask(AUDIO_IDS.to(device))

    print("✅ Modelle geladen", flush=True)

# 4) Helper -----------------------------------------------------------
def build_prompt(text: str, voice: str):
    prompt_ids = tok(f"{voice}: {text}", return_tensors="pt").input_ids.to(device)
    ids   = torch.cat([torch.tensor([[START_TOKEN]], device=device),
                       prompt_ids,
                       torch.tensor([[128009, 128260]], device=device)], 1)
    attn  = torch.ones_like(ids)
    return ids, attn # Ensure attention mask is created

def decode_block(block7: list[int]) -> bytes:
    l1,l2,l3=[],[],[]
    l1.append(block7[0] - 0 * 4096) # Subtract position 0 offset
    l2.append(block7[1] - 1 * 4096) # Subtract position 1 offset
    l3 += [block7[2] - 2 * 4096, block7[3] - 3 * 4096] # Subtract position offsets
    l2.append(block7[4] - 4 * 4096) # Subtract position 4 offset
    l3 += [block7[5] - 5 * 4096, block7[6] - 6 * 4096] # Subtract position offsets

    with torch.no_grad():
        codes = [torch.tensor(x, device=device).unsqueeze(0)
                 for x in (l1,l2,l3)]
        audio = snac.decode(codes).squeeze().detach().cpu().numpy()

    return (audio*32767).astype("int16").tobytes()

# 5) WebSocket‑Endpoint ----------------------------------------------
@app.websocket("/ws/tts")
async def tts(ws: WebSocket):
    await ws.accept()
    try:
        req   = json.loads(await ws.receive_text())
        text  = req.get("text", "")
        voice = req.get("voice", "Jakob")

        ids, attn = build_prompt(text, voice)
        past      = None
        ids, attn = build_prompt(text, voice)
        past = None # Holds the DynamicCache object from past_key_values
        buf = []
        last_tok = None # Initialize last_tok

        while True:
            # Determine inputs for this iteration
            if past is None:
                # First iteration: Use the full prompt
                current_input_ids = ids
                current_attn_mask = attn
                # DO NOT pass cache_position on the first run
                current_cache_position = None
            else:
                # Subsequent iterations: Use only the last token
                if last_tok is None:
                    print("Error: last_tok is None before subsequent generate call.")
                    break # Should not happen if generation proceeded
                current_input_ids = torch.tensor([[last_tok]], device=device)
                current_attn_mask = None # Not needed when past_key_values is provided
                # DO NOT pass cache_position; let DynamicCache handle it
                current_cache_position = None

            # --- Call model.generate ---
            try:
                gen = model.generate(
                    input_ids=current_input_ids,
                    attention_mask=current_attn_mask,
                    past_key_values=past,
                    cache_position=current_cache_position, # Will be None after first iteration
                    max_new_tokens=CHUNK_TOKENS,
                    logits_processor=[masker],
                    do_sample=True, temperature=0.7, top_p=0.95,
                    use_cache=True,
                    return_dict_in_generate=True,
                    return_legacy_cache=False # Ensures DynamicCache
                )
            except Exception as e:
                print(f"❌ Error during model.generate: {e}")
                import traceback
                traceback.print_exc()
                break # Exit loop on generation error

            # --- Process Output ---
            # Get the full sequence generated *up to this point*
            full_sequence_now = gen.sequences # Get the sequence tensor

            # Determine the sequence length *before* this generation call using the cache
            # If past is None, the previous length was the initial prompt length
            prev_seq_len = past.get_seq_length() if past is not None else ids.shape

            # The new tokens are those generated *in this call*
            # These appear *after* the previously cached sequence length
            # Ensure slicing is correct even if no new tokens are generated
            if full_sequence_now.shape > prev_seq_len:
                 new_token_ids = full_sequence_now[prev_seq_len:]
                 new = new_token_ids.tolist() # Convert tensor to list
            else:
                 new = [] # No new tokens generated

            if not new: # If no new tokens were generated, stop
                print("No new tokens generated, stopping.")
                break

            # Update past_key_values for the *next* iteration
            past = gen.past_key_values # Update the cache state

            # Get the very last token generated in *this* call for the *next* input
            last_tok = new[-1]

            # ----- Token‑Handling (process the 'new' list) -----
            eos_found = False
            for t in new:
                if t == EOS_TOKEN:
                    print("EOS token encountered.")
                    eos_found = True
                    break # Stop processing tokens in this chunk
                if t == NEW_BLOCK:
                    buf.clear()
                    continue
                # Check if token is within the expected audio range
                if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
                    buf.append(t - AUDIO_BASE)
                else:
                    # Log unexpected tokens if necessary
                    # print(f"Warning: Generated token {t} outside expected audio range.")
                    pass # Ignore unexpected tokens for now

                if len(buf) == 7:
                    await ws.send_bytes(decode_block(buf))
                    buf.clear()
                    # Allow EOS only after the first full block is sent
                    if not masker.sent_blocks:
                         masker.sent_blocks = 1

            if eos_found:
                # Handle any remaining buffer content if needed (e.g., log incomplete block)
                if len(buf) > 0:
                     print(f"Warning: Incomplete audio block at EOS: {len(buf)} tokens. Discarding.")
                     buf.clear()
                break # Exit the while loop

    except (StopIteration, WebSocketDisconnect):
        pass
    except Exception as e:
        print("❌ WS‑Error:", e, flush=True)
        import traceback
        traceback.print_exc()
        if ws.client_state.name != "DISCONNECTED":
            await ws.close(code=1011)
    finally:
        if ws.client_state.name != "DISCONNECTED":
            try:
                await ws.close()
            except RuntimeError:
                pass

# 6) Dev‑Start --------------------------------------------------------
if __name__ == "__main__":
    import uvicorn, sys
    uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")