File size: 4,839 Bytes
a09ea48
 
 
0316ec3
4189fe1
0316ec3
a09ea48
 
0dfc310
0316ec3
0dfc310
a09ea48
 
 
 
2008a3f
e97a876
1ab029d
0316ec3
0dfc310
e97a876
a09ea48
0316ec3
674acbf
b3e4aa7
0dfc310
 
 
 
 
 
 
 
 
f001a32
e97a876
b3e4aa7
a09ea48
e97a876
b3e4aa7
0dfc310
b3e4aa7
a09ea48
b3e4aa7
a09ea48
b3e4aa7
 
 
 
 
a09ea48
ad94d02
b3e4aa7
 
 
 
e97a876
b3e4aa7
a09ea48
b3e4aa7
0316ec3
a09ea48
0dfc310
b3e4aa7
 
 
 
 
 
 
 
0dfc310
b3e4aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97006e1
0dfc310
4189fe1
 
a8606ac
a09ea48
 
4189fe1
 
b3e4aa7
a09ea48
0dfc310
 
674acbf
0dfc310
b3e4aa7
a09ea48
0dfc310
b3e4aa7
0dfc310
 
 
b3e4aa7
0dfc310
 
 
 
b3e4aa7
0dfc310
 
b3e4aa7
 
 
 
0dfc310
b3e4aa7
 
 
0dfc310
 
b3e4aa7
 
 
 
 
4189fe1
a09ea48
 
 
b3e4aa7
a09ea48
4189fe1
a09ea48
4189fe1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from dotenv import load_dotenv
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login, snapshot_download

# — ENV & HF‑AUTH —
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
    login(token=HF_TOKEN)

# — Device —
device = "cuda" if torch.cuda.is_available() else "cpu"

# — Modelle laden —
print("Loading SNAC model…")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)

model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
print("Downloading Orpheus weights (konfig + safetensors)…")
snapshot_download(
    repo_id=model_name,
    allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
    ignore_patterns=[
        "optimizer.pt", "pytorch_model.bin", "training_args.bin",
        "scheduler.pt", "tokenizer.json", "tokenizer_config.json",
        "special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*"
    ]
)

print("Loading Orpheus model…")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
model.config.pad_token_id = model.config.eos_token_id

tokenizer = AutoTokenizer.from_pretrained(model_name)

# — Hilfsfunktionen — 
def process_prompt(text: str, voice: str):
    """Erzeuge input_ids und attention_mask für einen Prompt."""
    prompt = f"{voice}: {text}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
    start = torch.tensor([[128259]], dtype=torch.int64, device=device)
    end   = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
    ids   = torch.cat([start, input_ids, end], dim=1)
    mask  = torch.ones_like(ids)
    return ids, mask

def parse_output(generated_ids: torch.LongTensor) -> list[int]:
    """Extrahiere rohe Tokenliste nach dem letzten 128257-Start-Token."""
    token_to_find   = 128257
    token_to_remove = 128258

    idxs = (generated_ids == token_to_find).nonzero(as_tuple=True)[1]
    if idxs.numel() > 0:
        cropped = generated_ids[:, idxs[-1].item() + 1 :]
    else:
        cropped = generated_ids

    row = cropped[0]
    row = row[row != token_to_remove]
    return row.tolist()

def redistribute_codes(code_list: list[int]) -> bytes:
    """Verteile die Codes auf die drei SNAC-Layer und dekodiere zu PCM16-Bytes."""
    l1, l2, l3 = [], [], []
    for i in range((len(code_list) + 1) // 7):
        base = code_list[7*i : 7*i+7]
        l1.append(base[0])
        l2.append(base[1] -   4096)
        l3.append(base[2] - 2*4096)
        l3.append(base[3] - 3*4096)
        l2.append(base[4] - 4*4096)
        l3.append(base[5] - 5*4096)
        l3.append(base[6] - 6*4096)

    dev = next(snac.parameters()).device
    codes = [
        torch.tensor(l1, device=dev).unsqueeze(0),
        torch.tensor(l2, device=dev).unsqueeze(0),
        torch.tensor(l3, device=dev).unsqueeze(0),
    ]
    audio = snac.decode(codes).squeeze().cpu().numpy()  # float32 @24 kHz
    pcm16 = (audio * 32767).astype("int16").tobytes()
    return pcm16

# — FastAPI + WebSocket-Endpoint —
app = FastAPI()

@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
    await ws.accept()
    try:
        while True:
            # 1) Nachricht empfangen
            msg = await ws.receive_text()
            data  = json.loads(msg)
            text  = data.get("text", "")
            voice = data.get("voice", "Jakob")

            # 2) Prompt → IDs/Mask
            ids, mask = process_prompt(text, voice)

            # 3) Token-Generation
            gen_ids = model.generate(
                input_ids=ids,
                attention_mask=mask,
                max_new_tokens=2000,
                do_sample=True,
                temperature=0.7,
                top_p=0.95,
                repetition_penalty=1.1,
                eos_token_id=128258,
            )

            # 4) Parse + SNAC → PCM16‑Bytes
            codes   = parse_output(gen_ids)
            pcm16   = redistribute_codes(codes)
            chunk_sz = 2400 * 2  # 0.1 s @24 kHz

            # 5) Stream audio‑Chunks
            for i in range(0, len(pcm16), chunk_sz):
                await ws.send_bytes(pcm16[i : i + chunk_sz])
                await asyncio.sleep(0.1)

            # 6) Ende‑Signal
            await ws.send_json({"event": "eos"})

            # (Verbindung bleibt offen für nächste Anfrage)

    except WebSocketDisconnect:
        print("Client disconnected")
    except Exception as e:
        print("Error in /ws/tts:", e)
        # Schließe erst, nachdem Fehler gemeldet
        await ws.close(code=1011)

if __name__ == "__main__":
    import uvicorn
    uvicorn.run("app:app", host="0.0.0.0", port=7860)