Spaces:
Paused
Paused
import os | |
import json | |
import asyncio | |
import torch | |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect | |
from dotenv import load_dotenv | |
from snac import SNAC | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import login, snapshot_download | |
# βββ ENV & HF TOKEN ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN: | |
login(token=HF_TOKEN) | |
# βββ DEVICE βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# βββ SNAC βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
print("Loading SNAC modelβ¦") | |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) | |
# βββ ORPHEUS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" | |
# preβdownload only the config + safetensors, damit das Image schlank bleibt | |
snapshot_download( | |
repo_id=model_name, | |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"], | |
ignore_patterns=[ | |
"optimizer.pt", "pytorch_model.bin", "training_args.bin", | |
"scheduler.pt", "tokenizer.*", "vocab.json", "merges.txt" | |
] | |
) | |
print("Loading Orpheus modelβ¦") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16 # optional: beschleunigt das FP16βΓ€hnliche Rechnen | |
) | |
model = model.to(device) | |
model.config.pad_token_id = model.config.eos_token_id | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# βββ HILFSFUNKTIONEN ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def process_prompt(text: str, voice: str): | |
""" | |
Baut aus Text+Voice ein batchβTensor input_ids fΓΌr `model.generate`. | |
""" | |
prompt = f"{voice}: {text}" | |
tok = tokenizer(prompt, return_tensors="pt").to(device) | |
start = torch.tensor([[128259]], device=device) | |
end = torch.tensor([[128009, 128260]], device=device) | |
return torch.cat([start, tok.input_ids, end], dim=1) | |
def parse_output(generated_ids: torch.LongTensor): | |
""" | |
Schneidet bis zum letzten 128257 und entfernt 128258, gibt reine TokenβListe zurΓΌck. | |
""" | |
START, PAD = 128257, 128258 | |
idxs = (generated_ids == START).nonzero(as_tuple=True)[1] | |
if idxs.numel() > 0: | |
cropped = generated_ids[:, idxs[-1].item()+1:] | |
else: | |
cropped = generated_ids | |
row = cropped[0][cropped[0] != PAD] | |
return row.tolist() | |
def redistribute_codes(code_list: list[int], snac_model: SNAC): | |
""" | |
Verteilt 7erβBlΓΆcke auf die drei SNACβLayer und dekodiert zu Audio (numpy float32). | |
""" | |
layer1, layer2, layer3 = [], [], [] | |
for i in range((len(code_list) + 1) // 7): | |
base = code_list[7*i : 7*i+7] | |
layer1.append(base[0]) | |
layer2.append(base[1] - 4096) | |
layer3.append(base[2] - 2*4096) | |
layer3.append(base[3] - 3*4096) | |
layer2.append(base[4] - 4*4096) | |
layer3.append(base[5] - 5*4096) | |
layer3.append(base[6] - 6*4096) | |
dev = next(snac_model.parameters()).device | |
codes = [ | |
torch.tensor(layer1, device=dev).unsqueeze(0), | |
torch.tensor(layer2, device=dev).unsqueeze(0), | |
torch.tensor(layer3, device=dev).unsqueeze(0), | |
] | |
audio = snac_model.decode(codes) | |
return audio.detach().squeeze().cpu().numpy() | |
# βββ FASTAPI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
app = FastAPI() | |
async def healthcheck(): | |
return {"status": "ok", "msg": "Hello, Orpheus TTS up!"} | |
async def tts_ws(ws: WebSocket): | |
await ws.accept() | |
try: | |
while True: | |
# 1) Eintreffende JSONβNachricht parsen | |
data = json.loads(await ws.receive_text()) | |
text = data.get("text", "") | |
voice = data.get("voice", "Jakob") | |
# 2) Prompt β input_ids | |
ids = process_prompt(text, voice) | |
# 3) TokenβErzeugung | |
gen_ids = model.generate( | |
input_ids=ids, | |
max_new_tokens=2000, # hier z.B. 20k geht auch, wird aber speicherintensiv | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.1, | |
eos_token_id=model.config.eos_token_id, | |
) | |
# 4) Tokens β CodeβListe β Audio | |
codes = parse_output(gen_ids) | |
audio_np = redistribute_codes(codes, snac) | |
# 5) PCM16βStream in 0.1βsβBlΓΆcken | |
pcm16 = (audio_np * 32767).astype("int16").tobytes() | |
chunk = 2400 * 2 | |
for i in range(0, len(pcm16), chunk): | |
await ws.send_bytes(pcm16[i : i+chunk]) | |
await asyncio.sleep(0.1) | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
except Exception as e: | |
print("Error in /ws/tts:", e) | |
await ws.close(code=1011) | |
# βββ START ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info") | |