Spaces:
Paused
Paused
import os | |
import json | |
import asyncio | |
import torch | |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect | |
from dotenv import load_dotenv | |
from snac import SNAC | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import login, snapshot_download | |
# — ENV & HF‑AUTH — | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN: | |
login(token=HF_TOKEN) | |
# — Device — | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# — SNAC laden — | |
print("Loading SNAC model...") | |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) | |
# — Orpheus‑Modell vorbereiten — | |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" | |
# Nur Konfig+Weights (ermöglicht schlankeren Container) | |
snapshot_download( | |
repo_id=model_name, | |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"], | |
ignore_patterns=[ | |
"optimizer.pt", "pytorch_model.bin", "training_args.bin", | |
"scheduler.pt", "tokenizer.json", "tokenizer_config.json", | |
"special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*" | |
] | |
) | |
print("Loading Orpheus model...") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
).to(device) | |
model.config.pad_token_id = model.config.eos_token_id | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# — Hilfsfunktionen — | |
def process_prompt(text: str, voice: str): | |
prompt = f"{voice}: {text}" | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
# füge Start-/End-Tokens hinzu | |
start = torch.tensor([[128259]], device=device) | |
end = torch.tensor([[128009, 128260]], device=device) | |
input_ids = torch.cat([start, inputs.input_ids, end], dim=1) | |
return input_ids | |
def parse_output(generated_ids: torch.LongTensor): | |
token_to_find = 128257 | |
token_to_remove = 128258 | |
idxs = (generated_ids == token_to_find).nonzero(as_tuple=True)[1] | |
if idxs.numel() > 0: | |
cropped = generated_ids[:, idxs[-1].item() + 1 :] | |
else: | |
cropped = generated_ids | |
row = cropped[0][cropped[0] != token_to_remove] | |
return row.tolist() | |
def redistribute_codes(code_list: list[int], snac_model: SNAC): | |
layer1, layer2, layer3 = [], [], [] | |
for i in range((len(code_list) + 1) // 7): | |
base = code_list[7*i : 7*i+7] | |
layer1.append(base[0]) | |
layer2.append(base[1] - 4096) | |
layer3.append(base[2] - 2*4096) | |
layer3.append(base[3] - 3*4096) | |
layer2.append(base[4] - 4*4096) | |
layer3.append(base[5] - 5*4096) | |
layer3.append(base[6] - 6*4096) | |
dev = next(snac_model.parameters()).device | |
codes = [ | |
torch.tensor(layer1, device=dev).unsqueeze(0), | |
torch.tensor(layer2, device=dev).unsqueeze(0), | |
torch.tensor(layer3, device=dev).unsqueeze(0), | |
] | |
audio = snac_model.decode(codes) | |
return audio.detach().squeeze().cpu().numpy() | |
# — FastAPI App — | |
app = FastAPI() | |
async def hello(): | |
return {"message": "Hello, Orpheus TTS is up and running!"} | |
async def tts_ws(ws: WebSocket): | |
await ws.accept() | |
try: | |
# **Nur EIN Request pro Connection** | |
raw = await ws.receive_text() | |
data = json.loads(raw) | |
text = data.get("text", "") | |
voice = data.get("voice", "Jakob") | |
# 1) Text → input_ids | |
input_ids = process_prompt(text, voice) | |
# 2) Generation | |
gen_ids = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=2000, # hier kannst du hochsetzen | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.1, | |
eos_token_id=model.config.eos_token_id, | |
) | |
# 3) Token → Audio | |
codes = parse_output(gen_ids) | |
audio_np = redistribute_codes(codes, snac) | |
# 4) PCM16-Bytes in ~0.1s‑Chunks streamen | |
pcm16 = (audio_np * 32767).astype("int16").tobytes() | |
chunk_size = 2400 * 2 # 2400 Samples @24kHz = 0.1s * 2 Byte | |
for i in range(0, len(pcm16), chunk_size): | |
await ws.send_bytes(pcm16[i : i+chunk_size]) | |
await asyncio.sleep(0.1) | |
# Sauber schließen, Client erhält ConnectionClosedOK | |
await ws.close() | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
except Exception as e: | |
# Log und saubere Fehler‑Closure | |
print("Error in /ws/tts:", e) | |
await ws.close(code=1011) | |