Tomtom84's picture
up2
9cd424e
raw
history blame
4.55 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from dotenv import load_dotenv
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login, snapshot_download
# — ENV & HF‑AUTH —
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# — Device —
device = "cuda" if torch.cuda.is_available() else "cpu"
# — SNAC laden —
print("Loading SNAC model...")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
# — Orpheus‑Modell vorbereiten —
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
# Nur Konfig+Weights (ermöglicht schlankeren Container)
snapshot_download(
repo_id=model_name,
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
ignore_patterns=[
"optimizer.pt", "pytorch_model.bin", "training_args.bin",
"scheduler.pt", "tokenizer.json", "tokenizer_config.json",
"special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*"
]
)
print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
).to(device)
model.config.pad_token_id = model.config.eos_token_id
tokenizer = AutoTokenizer.from_pretrained(model_name)
# — Hilfsfunktionen —
def process_prompt(text: str, voice: str):
prompt = f"{voice}: {text}"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# füge Start-/End-Tokens hinzu
start = torch.tensor([[128259]], device=device)
end = torch.tensor([[128009, 128260]], device=device)
input_ids = torch.cat([start, inputs.input_ids, end], dim=1)
return input_ids
def parse_output(generated_ids: torch.LongTensor):
token_to_find = 128257
token_to_remove = 128258
idxs = (generated_ids == token_to_find).nonzero(as_tuple=True)[1]
if idxs.numel() > 0:
cropped = generated_ids[:, idxs[-1].item() + 1 :]
else:
cropped = generated_ids
row = cropped[0][cropped[0] != token_to_remove]
return row.tolist()
def redistribute_codes(code_list: list[int], snac_model: SNAC):
layer1, layer2, layer3 = [], [], []
for i in range((len(code_list) + 1) // 7):
base = code_list[7*i : 7*i+7]
layer1.append(base[0])
layer2.append(base[1] - 4096)
layer3.append(base[2] - 2*4096)
layer3.append(base[3] - 3*4096)
layer2.append(base[4] - 4*4096)
layer3.append(base[5] - 5*4096)
layer3.append(base[6] - 6*4096)
dev = next(snac_model.parameters()).device
codes = [
torch.tensor(layer1, device=dev).unsqueeze(0),
torch.tensor(layer2, device=dev).unsqueeze(0),
torch.tensor(layer3, device=dev).unsqueeze(0),
]
audio = snac_model.decode(codes)
return audio.detach().squeeze().cpu().numpy()
# — FastAPI App —
app = FastAPI()
@app.get("/")
async def hello():
return {"message": "Hello, Orpheus TTS is up and running!"}
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
# **Nur EIN Request pro Connection**
raw = await ws.receive_text()
data = json.loads(raw)
text = data.get("text", "")
voice = data.get("voice", "Jakob")
# 1) Text → input_ids
input_ids = process_prompt(text, voice)
# 2) Generation
gen_ids = model.generate(
input_ids=input_ids,
max_new_tokens=2000, # hier kannst du hochsetzen
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1,
eos_token_id=model.config.eos_token_id,
)
# 3) Token → Audio
codes = parse_output(gen_ids)
audio_np = redistribute_codes(codes, snac)
# 4) PCM16-Bytes in ~0.1s‑Chunks streamen
pcm16 = (audio_np * 32767).astype("int16").tobytes()
chunk_size = 2400 * 2 # 2400 Samples @24kHz = 0.1s * 2 Byte
for i in range(0, len(pcm16), chunk_size):
await ws.send_bytes(pcm16[i : i+chunk_size])
await asyncio.sleep(0.1)
# Sauber schließen, Client erhält ConnectionClosedOK
await ws.close()
except WebSocketDisconnect:
print("Client disconnected")
except Exception as e:
# Log und saubere Fehler‑Closure
print("Error in /ws/tts:", e)
await ws.close(code=1011)