Tomtom84's picture
up1
d408dd5
raw
history blame
5.24 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from dotenv import load_dotenv
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login, snapshot_download
# — ENV & HF‑AUTH —
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# — Gerät wählen —
device = "cuda" if torch.cuda.is_available() else "cpu"
# — Modelle laden —
print("Loading SNAC model...")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
snapshot_download(
repo_id=model_name,
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
ignore_patterns=[
"optimizer.pt", "pytorch_model.bin", "training_args.bin",
"scheduler.pt", "tokenizer.json", "tokenizer_config.json",
"special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*"
]
)
print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.bfloat16
).to(device)
model.config.pad_token_id = model.config.eos_token_id
tokenizer = AutoTokenizer.from_pretrained(model_name)
# — Konstanten für Token‑Mapping —
AUDIO_TOKEN_OFFSET = 128266
START_TOKEN = 128259
SOS_TOKEN = 128257
EOS_TOKEN = 128258
# — Hilfsfunktionen —
def process_prompt(text: str, voice: str):
prompt = f"{voice}: {text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
start = torch.tensor([[START_TOKEN]], dtype=torch.int64, device=device)
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
ids = torch.cat([start, input_ids, end], dim=1)
mask = torch.ones_like(ids, dtype=torch.int64, device=device)
return ids, mask
def redistribute_codes(block: list[int], snac_model: SNAC):
# exakt wie vorher: 7 Codes → 3 Layer → SNAC.decode → NumPy float32 @24 kHz
l1, l2, l3 = [], [], []
for i in range(len(block)//7):
b = block[7*i:7*i+7]
l1.append(b[0])
l2.append(b[1] - 4096)
l3.append(b[2] - 2*4096)
l3.append(b[3] - 3*4096)
l2.append(b[4] - 4*4096)
l3.append(b[5] - 5*4096)
l3.append(b[6] - 6*4096)
dev = next(snac_model.parameters()).device
codes = [
torch.tensor(l1, device=dev).unsqueeze(0),
torch.tensor(l2, device=dev).unsqueeze(0),
torch.tensor(l3, device=dev).unsqueeze(0),
]
audio = snac_model.decode(codes) # → Tensor[1, T]
return audio.squeeze().cpu().numpy()
# — FastAPI Setup —
app = FastAPI()
# 1) Hello‑World Endpoint
@app.get("/")
async def root():
return {"message": "Hallo Welt"}
# 2) WebSocket Token‑für‑Token TTS
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
while True:
# JSON mit Text & Voice empfangen
raw = await ws.receive_text()
req = json.loads(raw)
text, voice = req.get("text", ""), req.get("voice", "Jakob")
ids, mask = process_prompt(text, voice)
past_kv = None
collected = []
# im Sampling‑Loop Token für Token generieren
with torch.no_grad():
for _ in range(2000): # max 200 Tokens
out = model(
input_ids=ids if past_kv is None else None,
attention_mask=mask if past_kv is None else None,
past_key_values=past_kv,
use_cache=True,
)
logits = out.logits[:, -1, :]
next_id = torch.multinomial(torch.softmax(logits, dim=-1), num_samples=1)
past_kv = out.past_key_values
token = next_id.item()
# Ende
if token == EOS_TOKEN:
break
# Reset bei SOS
if token == SOS_TOKEN:
collected = []
continue
# in Audio‑Code konvertieren
collected.append(token - AUDIO_TOKEN_OFFSET)
# sobald 7 Codes → direkt dekodieren & streamen
if len(collected) >= 7:
block = collected[:7]
collected = collected[7:]
audio_np = redistribute_codes(block, snac)
pcm16 = (audio_np * 32767).astype("int16").tobytes()
await ws.send_bytes(pcm16)
# ab jetzt nur noch past_kv verwenden
ids = None
mask = None
# zum Schluss End‑Of‑Stream signalisieren
await ws.send_text(json.dumps({"event": "eos"}))
except WebSocketDisconnect:
print("Client disconnected")
except Exception as e:
print("Error in /ws/tts:", e)
await ws.close(code=1011)
# zum lokalen Test
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)