Spaces:
Paused
Paused
import os | |
import json | |
import asyncio | |
import torch | |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect | |
from fastapi.responses import PlainTextResponse | |
from dotenv import load_dotenv | |
from snac import SNAC | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
# — ENV & HF‑AUTH — | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN: | |
# automatisch über huggingface-cli eingeloggt | |
os.environ["HUGGINGFACE_HUB_TOKEN"] = HF_TOKEN | |
# — FastAPI → | |
app = FastAPI() | |
async def hello(): | |
return PlainTextResponse("Hallo Welt!") | |
# — Device konfigurieren — | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# — SNAC laden — | |
print("Loading SNAC model…") | |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) | |
# — Orpheus/Kartoffel‑3B über PEFT laden — | |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" | |
print(f"Loading base LM + PEFT from {model_name}…") | |
base = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model = PeftModel.from_pretrained( | |
base, | |
model_name, | |
device_map="auto", | |
) | |
model.eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# sicherstellen, dass pad_token_id gesetzt ist | |
model.config.pad_token_id = model.config.eos_token_id | |
# — Hilfsfunktionen — | |
def prepare_prompt(text: str, voice: str): | |
"""Setzt Start‑ und End‑Marker um den eigentlichen Prompt.""" | |
if voice: | |
full = f"{voice}: {text}" | |
else: | |
full = text | |
start = torch.tensor([[128259]], dtype=torch.int64) # BOS für Audio | |
end = torch.tensor([[128009, 128260]], dtype=torch.int64) # ggf. Speaker‑ID + Marker | |
enc = tokenizer(full, return_tensors="pt").input_ids | |
seq = torch.cat([start, enc, end], dim=1).to(device) | |
mask = torch.ones_like(seq).to(device) | |
return seq, mask | |
def extract_audio_tokens(generated: torch.LongTensor): | |
"""Croppe alles bis zum echten Audio-Start, entferne EOS und mache 7er-Batches.""" | |
bos_tok = 128257 | |
eos_tok = 128258 | |
# letzten Start‑Token finden und ab da weiter | |
idxs = (generated == bos_tok).nonzero(as_tuple=True)[1] | |
if idxs.numel() > 0: | |
cut = idxs[-1].item() + 1 | |
cropped = generated[:, cut:] | |
else: | |
cropped = generated | |
# EOS‑Marker entfernen | |
flat = cropped[0][cropped[0] != eos_tok] | |
# nur ein Vielfaches von 7 behalten | |
length = (flat.size(0) // 7) * 7 | |
flat = flat[:length] | |
# Die Audio‑Token beginnen ab Offset 128266 | |
return [(t.item() - 128266) for t in flat] | |
def decode_and_stream(tokens: list[int], ws: WebSocket): | |
"""Wandelt 7er‑Gruppen in Wave‑Samples um und streamt in 0.1 s Chunks.""" | |
# gruppiere nach 7 und dekodiere jeweils | |
pcm16 = bytearray() | |
offset = 0 | |
while offset + 7 <= len(tokens): | |
block = tokens[offset:offset+7] | |
offset += 7 | |
# SNAC‑Input vorbereiten | |
# Layer‑1: direkt, Layer‑2/3 mit Offsets | |
l1, l2, l3 = [], [], [] | |
l1.append(block[0]) | |
l2.append(block[1] - 4096) | |
l3.append(block[2] - 2*4096) | |
l3.append(block[3] - 3*4096) | |
l2.append(block[4] - 4*4096) | |
l3.append(block[5] - 5*4096) | |
l3.append(block[6] - 6*4096) | |
t1 = torch.tensor(l1, device=device).unsqueeze(0) | |
t2 = torch.tensor(l2, device=device).unsqueeze(0) | |
t3 = torch.tensor(l3, device=device).unsqueeze(0) | |
audio = snac.decode([t1, t2, t3]).squeeze().cpu().numpy() | |
# in PCM16 @24 kHz | |
pcm = (audio * 32767).astype("int16").tobytes() | |
pcm16.extend(pcm) | |
# in 0.1 s‑Chunks (2400 Samples ×2 Bytes) | |
chunk_size = 2400 * 2 | |
for i in range(0, len(pcm16), chunk_size): | |
ws.send_bytes(pcm16[i : i+chunk_size]) | |
# ohne Pause kann das WebSocket überlastet werden | |
asyncio.sleep(0.1) | |
# — WebSocket TTS Endpoint — | |
async def tts_ws(ws: WebSocket): | |
await ws.accept() | |
try: | |
while True: | |
raw = await ws.receive_text() | |
req = json.loads(raw) | |
text = req.get("text", "") | |
voice = req.get("voice", "") | |
# Prompt vorbereiten | |
ids, mask = prepare_prompt(text, voice) | |
# Audio‑Token generieren | |
gen = model.generate( | |
input_ids=ids, | |
attention_mask=mask, | |
max_new_tokens=4000, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.1, | |
eos_token_id=128258, | |
forced_bos_token_id=128259, | |
use_cache=True, | |
) | |
codes = extract_audio_tokens(gen) | |
# stream synchron | |
await decode_and_stream(codes, ws) | |
# sauber schließen | |
await ws.close(code=1000) | |
break | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
except Exception as e: | |
print("Error in /ws/tts:", e) | |
await ws.close(code=1011) | |
# — Lokal starten — | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run("app:app", host="0.0.0.0", port=7860) | |