File size: 13,001 Bytes
8ff13a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee26de
 
3b14f66
c65eb13
8ff13a2
 
 
 
 
 
 
916cd25
28190c5
8ff13a2
 
 
 
 
 
 
8ee26de
8ff13a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b14f66
 
 
 
0d60bb9
3b14f66
8ff13a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28190c5
 
 
 
 
 
 
8ff13a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d60bb9
28190c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff13a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577a6c7
 
 
8ff13a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# -*- coding: utf-8 -*-
"""OrpheusEngine
~~~~~~~~~~~~~~~~
A drop‑in replacement for the original ``orpheus_engine.py`` that fixes
all outstanding token‑streaming issues and eliminates audible clicks by

* streaming **token‑IDs** instead of partial text
* dynamically sending a *tiny* first audio chunk (3×7 codes) followed by
  steady blocks (30×7)
* mapping vLLM/OpenAI token‑IDs → SNAC codes without fragile
  ``"<custom_token_"`` string parsing
* adding an optional fade‑in / fade‑out per chunk
* emitting a proper WAV header as the first element in the queue so that
  browsers / HTML5 `<audio>` tags start playback immediately.

The API (``get_voices()``, ``set_voice()``, …) is unchanged, so you can
keep using it from RealTimeTTS.
"""

from __future__ import annotations
from snac import SNAC, __version__ as snac_version  


###############################################################################
# Standard library & 3rd‑party imports                                      #
###############################################################################
import json
import logging
import struct
import time
import os
import torch
from queue import Queue
from typing import Generator, Iterable, List, Optional

import numpy as np
import pyaudio  # provided by RealTimeTTS[system]
import requests
from RealtimeTTS.engines import BaseEngine
        

###############################################################################
# Constants                                                                  #
###############################################################################
DEFAULT_API_URL = "http://127.0.0.1:1234"
DEFAULT_MODEL = "SebastianBodza/Kartoffel_Orpheus-3B_german_synthetic-v0.1"
DEFAULT_HEADERS = {"Content-Type": "application/json"}
DEFAULT_VOICE = "Martin"

# Audio
SAMPLE_RATE = 24_000
BITS_PER_SAMPLE = 16
AUDIO_CHANNELS = 1

# Token‑ID magic numbers (defined in the model card)
CODE_START_TOKEN_ID   = 128257  # <|audio|>
CODE_REMOVE_TOKEN_ID  = 128258
CODE_TOKEN_OFFSET     = 128266  # <custom_token_?> – first usable code id

# Chunking strategy
_INITIAL_GROUPS = 3    # 3×7 = 21 codes ≈ 90 ms @24 kHz
_STEADY_GROUPS  = 30   # 30×7 = 210 codes ≈ 900 ms


SNAC_MODEL = os.getenv("SNAC_MODEL", "hubertsiuzdak/snac_24khz")




###############################################################################
# Helper functions                                                           #
###############################################################################

def _create_wav_header(sample_rate: int, bits_per_sample: int, channels: int) -> bytes:
    """Return a 44‑byte WAV/PCM header with unknown data size (0xFFFFFFFF)."""
    riff_size = 0xFFFFFFFF
    header = b"RIFF" + struct.pack("<I", riff_size) + b"WAVEfmt "
    header += struct.pack("<IHHIIHH", 16, 1, channels, sample_rate,
                           sample_rate * channels * bits_per_sample // 8,
                           channels * bits_per_sample // 8, bits_per_sample)
    header += b"data" + struct.pack("<I", 0xFFFFFFFF)
    return header


def _fade_in_out(audio: np.ndarray, fade_ms: int = 50) -> np.ndarray:
    """Apply linear fade‑in/out to avoid clicks."""
    if fade_ms <= 0:
        return audio
    fade_samples = int(SAMPLE_RATE * fade_ms / 1000)
    fade_samples -= fade_samples % 2  # keep it even
    if fade_samples == 0 or audio.size < 2 * fade_samples:
        return audio
    ramp = np.linspace(0.0, 1.0, fade_samples, dtype=np.float32)
    audio[:fade_samples] *= ramp
    audio[-fade_samples:] *= ramp[::-1]
    return audio

###############################################################################
# SNAC – lightweight wrapper                                                 #
###############################################################################
    try:
        from snac import SNAC
        _snac_model: Optional[SNAC] = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
        _snac_model = _snac_model.to("cuda" if _snac_model and _snac_model.torch.cuda.is_available() else "cpu")
    except Exception as exc:  # pragma: no cover
        logging.warning("SNAC model could not be loaded – %s", exc)
        _snac_model = None


def _codes_to_audio(codes: List[int]) -> bytes:
    """Convert a *flat* list of SNAC codes to 16‑bit PCM bytes."""
    if not _snac_model or not codes:
        return b""

    # --- redistribute into 3 snac layers (see original paper) --------------
    groups = len(codes) // 7
    codes = codes[: groups * 7]  # trim incomplete tail
    if groups == 0:
        return b""

    l1, l2, l3 = [], [], []
    for g in range(groups):
        base = g * 7
        l1.append(codes[base])
        l2.append(codes[base + 1] - 4096)
        l3.extend([
            codes[base + 2] - 2 * 4096,
            codes[base + 3] - 3 * 4096,
            codes[base + 5] - 5 * 4096,
            codes[base + 6] - 6 * 4096,
        ])
        l2.append(codes[base + 4] - 4 * 4096)

    import torch

    with torch.no_grad():
        layers = [
            torch.tensor(l1, device=_snac_model.device).unsqueeze(0),
            torch.tensor(l2, device=_snac_model.device).unsqueeze(0),
            torch.tensor(l3, device=_snac_model.device).unsqueeze(0),
        ]
        wav = _snac_model.decode(layers).cpu().numpy().squeeze()

    wav = _fade_in_out(wav)
    pcm = np.clip(wav * 32767, -32768, 32767).astype(np.int16).tobytes()
    return pcm

###############################################################################
# Main class                                                                 #
###############################################################################
class OrpheusVoice:
    def __init__(self, name: str, gender: str | None = None):
        self.name = name
        self.gender = gender


class OrpheusEngine(BaseEngine):
    """Realtime TTS engine using the Orpheus SNAC model via vLLM."""

    _SPEAKERS = [
        OrpheusVoice("Martin", "m"), OrpheusVoice("Emma", "f"),
        OrpheusVoice("Luca", "m"), OrpheusVoice("Anna", "f"),
        OrpheusVoice("Jakob", "m"), OrpheusVoice("Anton", "m"),
        OrpheusVoice("Julian", "m"), OrpheusVoice("Jan", "m"),
        OrpheusVoice("Alexander", "m"), OrpheusVoice("Emil", "m"),
        OrpheusVoice("Ben", "m"), OrpheusVoice("Elias", "m"),
        OrpheusVoice("Felix", "m"), OrpheusVoice("Jonas", "m"),
        OrpheusVoice("Noah", "m"), OrpheusVoice("Maximilian", "m"),
        OrpheusVoice("Sophie", "f"), OrpheusVoice("Marie", "f"),
        OrpheusVoice("Mia", "f"), OrpheusVoice("Maria", "f"),
        OrpheusVoice("Sophia", "f"), OrpheusVoice("Lina", "f"),
        OrpheusVoice("Lea", "f"),
    ]
    def _load_snac(self, model_name: str = SNAC_MODEL):
        """
        Lädt den SNAC-Decoder auf CPU/GPU.
        Fällt bei jedem Fehler sauber auf CPU zurück.
        """
        device = "cuda" if torch.cuda.is_available() else "cpu"
        try:
            snac = SNAC.from_pretrained(model_name).to(device)
            if device == "cuda":                       # half() nur auf GPU – ältere SNAC-Versionen haben keine .half()
                snac = snac.half()
            snac.eval()
            logging.info(f"SNAC {snac_version} loaded on {device}")
            return snac
        except Exception as e:
            logging.exception("SNAC load failed – running with silent fallback")
            return None
    # ---------------------------------------------------------------------
    def __init__(
        self,
        api_url: str = DEFAULT_API_URL,
        model: str = DEFAULT_MODEL,
        headers: dict = DEFAULT_HEADERS,
        voice: Optional[OrpheusVoice] = None,
        temperature: float = 0.6,
        top_p: float = 0.9,
        max_tokens: int = 1200,
        repetition_penalty: float = 1.1,
        debug: bool = False,
    ) -> None:
        super().__init__()
        self.api_url = api_url.rstrip("/")
        self.model = model
        self.headers = headers
        self.voice = voice or OrpheusVoice(DEFAULT_VOICE)
        self.temperature = temperature
        self.top_p = top_p
        self.max_tokens = max_tokens
        self.repetition_penalty = repetition_penalty
        self.debug = debug
        self.queue: "Queue[bytes | None]" = Queue()
        self.snac = self._load_snac()            # Decoder laden
        if self.snac is None:                    # Fallback-Hinweis
            logging.warning("⚠️  No SNAC – audio generation disabled.")
        self.engine_name = "orpheus"

    # ------------------------------------------------------------------ API
    def get_stream_info(self):
        return pyaudio.paInt16, AUDIO_CHANNELS, SAMPLE_RATE

    def get_voices(self):
        return self._SPEAKERS

    def set_voice(self, voice_name: str):
        if voice_name not in {v.name for v in self._SPEAKERS}:
            raise ValueError(f"Unknown Orpheus speaker '{voice_name}'")
        self.voice = OrpheusVoice(voice_name)

    # --------------------------------------------------------------- public
    def synthesize(self, text: str) -> bool:  # noqa: C901 (long)
        """Start streaming TTS for **text** – blocks until finished."""
        super().synthesize(text)
        self.queue.put(_create_wav_header(SAMPLE_RATE, BITS_PER_SAMPLE, AUDIO_CHANNELS))

        try:
            code_stream = self._stream_snac_codes(text)
            first_chunk = True
            buffer: List[int] = []
            sent = 0
            groups_needed = _INITIAL_GROUPS

            for code_id in code_stream:
                buffer.append(code_id)
                available = len(buffer) - sent
                if available >= groups_needed * 7:
                    chunk_codes = buffer[sent : sent + groups_needed * 7]
                    sent += groups_needed * 7
                    pcm = _codes_to_audio(chunk_codes)
                    if pcm:
                        self.queue.put(pcm)
                        first_chunk = False
                        groups_needed = _STEADY_GROUPS

            # flush remaining full groups
            remaining = len(buffer) - sent
            final_groups = remaining // 7
            if final_groups:
                pcm = _codes_to_audio(buffer[sent : sent + final_groups * 7])
                if pcm:
                    self.queue.put(pcm)

            return True
        except Exception as exc:  # pragma: no cover
            logging.exception("OrpheusEngine: synthesis failed – %s", exc)
            return False
        finally:
            self.queue.put(None)  # close stream

    # ------------------------------------------------------------ internals
    def _format_prompt(self, prompt: str) -> str:
        return f"<|audio|>{self.voice.name}: {prompt}<|eot_id|>"

    def _stream_snac_codes(self, prompt: str) -> Generator[int, None, None]:
        """Yield SNAC code‑IDs as they arrive from the model."""
        payload = {
            "model": self.model,
            "prompt": self._format_prompt(prompt),
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "stream": True,
            "skip_special_tokens": False,
            "frequency_penalty": self.repetition_penalty,
        }
        url = f"{self.api_url}/v1/completions"  # plain completion endpoint
        with requests.post(url, headers=self.headers, json=payload, stream=True, timeout=600) as r:
            r.raise_for_status()
            started = False
            for line in r.iter_lines():
                if not line:
                    continue
                if line.startswith(b"data: "):
                    data = line[6:].decode()
                    if data.strip() == "[DONE]":
                        break
                    try:
                        obj = json.loads(data)
                        delta = obj["choices"][0]
                        tid: int = delta.get("token_id")  # vLLM ≥0.9 provides this
                        if tid is None:
                            # fallback: derive from text
                            text_piece = delta.get("text", "")
                            if not text_piece:
                                continue
                            tid = ord(text_piece[-1])  # NOT reliable; skip
                            continue
                    except Exception:
                        continue

                    if not started:
                        if tid == CODE_START_TOKEN_ID:
                            started = True
                        continue
                    if tid == CODE_REMOVE_TOKEN_ID or tid < CODE_TOKEN_OFFSET:
                        continue
                    yield tid - CODE_TOKEN_OFFSET

    # ------------------------------------------------------------------ misc
    def __del__(self):
        try:
            self.queue.put(None)
        except Exception:
            pass