dev-mode-realtts-orpheus / engines /orpheus_decoder.py
Tomtom84's picture
Update engines/orpheus_decoder.py
af8d415 verified
from snac import SNAC
import numpy as np
import torch
import asyncio
import threading
import queue
model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
# Check if CUDA is available and set device accordingly
snac_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
model = model.to(snac_device)
snac_device = "cuda"
def convert_to_audio(multiframe, count):
frames = []
if len(multiframe) < 7:
return
codes_0 = torch.tensor([], device=snac_device, dtype=torch.int32)
codes_1 = torch.tensor([], device=snac_device, dtype=torch.int32)
codes_2 = torch.tensor([], device=snac_device, dtype=torch.int32)
num_frames = len(multiframe) // 7
frame = multiframe[:num_frames*7]
for j in range(num_frames):
i = 7*j
if codes_0.shape[0] == 0:
codes_0 = torch.tensor([frame[i]], device=snac_device, dtype=torch.int32)
else:
codes_0 = torch.cat([codes_0, torch.tensor([frame[i]], device=snac_device, dtype=torch.int32)])
if codes_1.shape[0] == 0:
codes_1 = torch.tensor([frame[i+1]], device=snac_device, dtype=torch.int32)
codes_1 = torch.cat([codes_1, torch.tensor([frame[i+4]], device=snac_device, dtype=torch.int32)])
else:
codes_1 = torch.cat([codes_1, torch.tensor([frame[i+1]], device=snac_device, dtype=torch.int32)])
codes_1 = torch.cat([codes_1, torch.tensor([frame[i+4]], device=snac_device, dtype=torch.int32)])
if codes_2.shape[0] == 0:
codes_2 = torch.tensor([frame[i+2]], device=snac_device, dtype=torch.int32)
codes_2 = torch.cat([codes_2, torch.tensor([frame[i+3]], device=snac_device, dtype=torch.int32)])
codes_2 = torch.cat([codes_2, torch.tensor([frame[i+5]], device=snac_device, dtype=torch.int32)])
codes_2 = torch.cat([codes_2, torch.tensor([frame[i+6]], device=snac_device, dtype=torch.int32)])
else:
codes_2 = torch.cat([codes_2, torch.tensor([frame[i+2]], device=snac_device, dtype=torch.int32)])
codes_2 = torch.cat([codes_2, torch.tensor([frame[i+3]], device=snac_device, dtype=torch.int32)])
codes_2 = torch.cat([codes_2, torch.tensor([frame[i+5]], device=snac_device, dtype=torch.int32)])
codes_2 = torch.cat([codes_2, torch.tensor([frame[i+6]], device=snac_device, dtype=torch.int32)])
codes = [codes_0.unsqueeze(0), codes_1.unsqueeze(0), codes_2.unsqueeze(0)]
# check that all tokens are between 0 and 4096 otherwise return *
if torch.any(codes[0] < 0) or torch.any(codes[0] > 4096) or torch.any(codes[1] < 0) or torch.any(codes[1] > 4096) or torch.any(codes[2] < 0) or torch.any(codes[2] > 4096):
return
with torch.inference_mode():
audio_hat = model.decode(codes)
audio_slice = audio_hat[:, :, 2048:4096]
detached_audio = audio_slice.detach().cpu()
audio_np = detached_audio.numpy()
audio_int16 = (audio_np * 32767).astype(np.int16)
audio_bytes = audio_int16.tobytes()
return audio_bytes
def turn_token_into_id(token_string, index):
# Strip whitespace
token_string = token_string.strip()
# Find the last token in the string
last_token_start = token_string.rfind("<custom_token_")
if last_token_start == -1:
print("No token found in the string")
return None
# Extract the last token
last_token = token_string[last_token_start:]
# Process the last token
if last_token.startswith("<custom_token_") and last_token.endswith(">"):
try:
number_str = last_token[14:-1]
return int(number_str) - 10 - ((index % 7) * 4096)
except ValueError:
return None
else:
return None
async def tokens_decoder(token_gen):
buffer = []
count = 0
async for token_sim in token_gen:
token = turn_token_into_id(token_sim, count)
if token is None:
pass
else:
if token > 0:
buffer.append(token)
count += 1
if count % 7 == 0 and count > 27:
buffer_to_proc = buffer[-28:]
audio_samples = convert_to_audio(buffer_to_proc, count)
if audio_samples is not None:
yield audio_samples
# ------------------ Synchronous Tokens Decoder Wrapper ------------------ #
def tokens_decoder_sync(syn_token_gen):
audio_queue = queue.Queue()
# Convert the synchronous token generator into an async generator.
async def async_token_gen():
for token in syn_token_gen:
yield token
async def async_producer():
# tokens_decoder.tokens_decoder is assumed to be an async generator that processes tokens.
async for audio_chunk in tokens_decoder(async_token_gen()):
audio_queue.put(audio_chunk)
audio_queue.put(None) # Sentinel
def run_async():
asyncio.run(async_producer())
thread = threading.Thread(target=run_async)
thread.start()
while True:
audio = audio_queue.get()
if audio is None:
break
yield audio
thread.join()