Update app.py
Browse files
app.py
CHANGED
|
@@ -1,398 +1,401 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
-
import json
|
| 4 |
-
import torch
|
| 5 |
-
import asyncio
|
| 6 |
-
import traceback # Import traceback for better error logging
|
| 7 |
-
|
| 8 |
-
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 9 |
-
from huggingface_hub import login
|
| 10 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, StoppingCriteria, StoppingCriteriaList
|
| 11 |
-
# Import BaseStreamer for the interface
|
| 12 |
-
from transformers.generation.streamers import BaseStreamer
|
| 13 |
-
from snac import SNAC # Ensure you have 'pip install snac'
|
| 14 |
-
|
| 15 |
-
# --- Globals (populated in load_models) ---
|
| 16 |
-
tok = None
|
| 17 |
-
model = None
|
| 18 |
-
snac = None
|
| 19 |
-
masker = None
|
| 20 |
-
stopping_criteria = None
|
| 21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
|
| 23 |
-
# 0) Login + Device ---------------------------------------------------
|
| 24 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 25 |
-
if HF_TOKEN:
|
| 26 |
-
print("π Logging in to Hugging Face Hub...")
|
| 27 |
-
login(HF_TOKEN)
|
| 28 |
-
|
| 29 |
-
# torch.backends.cuda.enable_flash_sdp(False) # Uncomment if needed for PyTorchβ2.2βBug
|
| 30 |
-
|
| 31 |
-
# 1) Konstanten -------------------------------------------------------
|
| 32 |
-
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
| 33 |
-
START_TOKEN = 128259
|
| 34 |
-
NEW_BLOCK = 128257
|
| 35 |
-
EOS_TOKEN = 128258 # Ensure this is correct for the model
|
| 36 |
-
AUDIO_BASE = 128266
|
| 37 |
-
AUDIO_SPAN = 4096 * 7 # 28672 Codes
|
| 38 |
-
CODEBOOK_SIZE = 4096 # Explicitly define the codebook size
|
| 39 |
-
AUDIO_IDS_CPU = torch.arange(AUDIO_BASE, AUDIO_BASE + AUDIO_SPAN)
|
| 40 |
-
|
| 41 |
-
# 2) LogitβMask -------------------------------------------------------
|
| 42 |
-
class AudioMask(LogitsProcessor):
|
| 43 |
-
def __init__(self, audio_ids: torch.Tensor, new_block_token_id: int, eos_token_id: int):
|
| 44 |
-
super().__init__()
|
| 45 |
-
self.allow = torch.cat([
|
| 46 |
-
torch.tensor([new_block_token_id], device=audio_ids.device, dtype=torch.long),
|
| 47 |
-
audio_ids
|
| 48 |
-
], dim=0)
|
| 49 |
-
self.eos = torch.tensor([eos_token_id], device=audio_ids.device, dtype=torch.long)
|
| 50 |
-
self.allow_with_eos = torch.cat([self.allow, self.eos], dim=0)
|
| 51 |
-
self.sent_blocks = 0 # State: Number of audio blocks sent
|
| 52 |
-
|
| 53 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
| 54 |
-
current_allow = self.allow_with_eos if self.sent_blocks > 0 else self.allow
|
| 55 |
-
mask = torch.full_like(scores, float("-inf"))
|
| 56 |
-
mask[:, current_allow] = 0
|
| 57 |
-
return scores + mask
|
| 58 |
-
|
| 59 |
-
def reset(self):
|
| 60 |
-
self.sent_blocks = 0
|
| 61 |
-
|
| 62 |
-
# 3) StoppingCriteria fΓΌr EOS ---------------------------------------
|
| 63 |
-
class EosStoppingCriteria(StoppingCriteria):
|
| 64 |
-
def __init__(self, eos_token_id: int):
|
| 65 |
-
self.eos_token_id = eos_token_id
|
| 66 |
-
|
| 67 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 68 |
-
if input_ids.shape[1] > 0 and input_ids[:, -1] == self.eos_token_id:
|
| 69 |
-
# print("StoppingCriteria: EOS detected.") # Optional: Uncomment for debugging
|
| 70 |
-
return True
|
| 71 |
-
return False
|
| 72 |
-
|
| 73 |
-
# 4) Benutzerdefinierter AudioStreamer -------------------------------
|
| 74 |
-
class AudioStreamer(BaseStreamer):
|
| 75 |
-
def __init__(self, ws: WebSocket, snac_decoder: SNAC, audio_mask: AudioMask, loop: asyncio.AbstractEventLoop, target_device: str):
|
| 76 |
-
self.ws = ws
|
| 77 |
-
self.snac = snac_decoder
|
| 78 |
-
self.masker = audio_mask
|
| 79 |
-
self.loop = loop
|
| 80 |
-
self.device = target_device
|
| 81 |
-
self.buf: list[int] = []
|
| 82 |
-
self.tasks = set()
|
| 83 |
-
|
| 84 |
-
def _decode_block(self, block7: list[int]) -> bytes:
|
| 85 |
-
"""
|
| 86 |
-
Decodes a block of 7 audio token values (AUDIO_BASE subtracted) into audio bytes.
|
| 87 |
-
Uses modulo to extract base code value (0-4095).
|
| 88 |
-
Maps extracted values using the structure potentially correct for Kartoffel_Orpheus.
|
| 89 |
-
"""
|
| 90 |
-
if len(block7) != 7:
|
| 91 |
-
print(f"Streamer Warning: _decode_block received {len(block7)} tokens, expected 7. Skipping.")
|
| 92 |
-
return b""
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
try:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
l2 = [code_val_1, code_val_4]
|
| 107 |
-
l3 = [code_val_2, code_val_3, code_val_5, code_val_6]
|
| 108 |
-
|
| 109 |
-
except IndexError:
|
| 110 |
-
print(f"Streamer Error: Index out of bounds during token mapping. Block: {block7}")
|
| 111 |
-
return b""
|
| 112 |
-
except Exception as e_map:
|
| 113 |
-
print(f"Streamer Error: Exception during code value extraction/mapping: {e_map}. Block: {block7}")
|
| 114 |
-
return b""
|
| 115 |
-
|
| 116 |
-
# --- Convert lists to tensors on the correct device ---
|
| 117 |
-
try:
|
| 118 |
-
codes_l1 = torch.tensor(l1, dtype=torch.long, device=self.device).unsqueeze(0)
|
| 119 |
-
codes_l2 = torch.tensor(l2, dtype=torch.long, device=self.device).unsqueeze(0)
|
| 120 |
-
codes_l3 = torch.tensor(l3, dtype=torch.long, device=self.device).unsqueeze(0)
|
| 121 |
-
codes = [codes_l1, codes_l2, codes_l3]
|
| 122 |
-
except Exception as e_tensor:
|
| 123 |
-
print(f"Streamer Error: Exception during tensor conversion: {e_tensor}. l1={l1}, l2={l2}, l3={l3}")
|
| 124 |
-
return b""
|
| 125 |
-
|
| 126 |
-
# --- Decode using SNAC ---
|
| 127 |
-
try:
|
| 128 |
-
with torch.no_grad():
|
| 129 |
-
audio = self.snac.decode(codes)[0]
|
| 130 |
-
except Exception as e_decode:
|
| 131 |
-
print(f"Streamer Error: Exception during snac.decode: {e_decode}")
|
| 132 |
-
print(f"Input codes shapes: {[c.shape for c in codes]}")
|
| 133 |
-
print(f"Input codes dtypes: {[c.dtype for c in codes]}")
|
| 134 |
-
print(f"Input codes devices: {[c.device for c in codes]}")
|
| 135 |
-
print(f"Input code values (min/max): L1({min(l1)}/{max(l1)}) L2({min(l2)}/{max(l2)}) L3({min(l3)}/{max(l3)})")
|
| 136 |
-
return b""
|
| 137 |
-
|
| 138 |
-
# --- Post-processing ---
|
| 139 |
-
try:
|
| 140 |
-
audio_np = audio.squeeze().detach().cpu().numpy()
|
| 141 |
-
audio_bytes = (audio_np * 32767).astype("int16").tobytes()
|
| 142 |
-
return audio_bytes
|
| 143 |
-
except Exception as e_post:
|
| 144 |
-
print(f"Streamer Error: Exception during post-processing: {e_post}. Audio tensor shape: {audio.shape}")
|
| 145 |
-
return b""
|
| 146 |
-
|
| 147 |
-
async def _send_audio_bytes(self, data: bytes):
|
| 148 |
-
"""Coroutine to send bytes over WebSocket."""
|
| 149 |
-
if not data:
|
| 150 |
-
return
|
| 151 |
-
try:
|
| 152 |
-
await self.ws.send_bytes(data)
|
| 153 |
-
except WebSocketDisconnect:
|
| 154 |
-
print("Streamer: WebSocket disconnected during send.")
|
| 155 |
except Exception as e:
|
| 156 |
-
|
| 157 |
-
if "Cannot call \"send\" once a close message has been sent" not in str(e):
|
| 158 |
-
print(f"Streamer: Error sending bytes: {e}")
|
| 159 |
-
# else: # Optionally print disconnect errors quietly
|
| 160 |
-
# print("Streamer: Attempted send after close.")
|
| 161 |
-
pass # Avoid flooding logs if client disconnects early
|
| 162 |
-
|
| 163 |
-
def put(self, value: torch.LongTensor):
|
| 164 |
-
"""
|
| 165 |
-
Receives new token IDs (Tensor) from generate().
|
| 166 |
-
Processes tokens, decodes full blocks, and schedules sending.
|
| 167 |
-
"""
|
| 168 |
-
if value.numel() == 0:
|
| 169 |
-
return
|
| 170 |
-
# Ensure value is on CPU and flatten to a list of ints
|
| 171 |
-
new_token_ids = value.squeeze().cpu().tolist() # Move to CPU before list conversion
|
| 172 |
-
if isinstance(new_token_ids, int):
|
| 173 |
-
new_token_ids = [new_token_ids]
|
| 174 |
-
|
| 175 |
-
for t in new_token_ids:
|
| 176 |
-
# --- DEBUGGING PRINT ---
|
| 177 |
-
# Log every token ID received from the model
|
| 178 |
-
print(f"Streamer received token ID: {t}")
|
| 179 |
-
# --- END DEBUGGING ---
|
| 180 |
-
|
| 181 |
-
if t == EOS_TOKEN:
|
| 182 |
-
# print("Streamer: EOS token encountered.") # Optional debugging
|
| 183 |
-
break # Stop processing this batch if EOS is found
|
| 184 |
-
|
| 185 |
-
if t == NEW_BLOCK:
|
| 186 |
-
# print("Streamer: NEW_BLOCK token encountered.") # Optional debugging
|
| 187 |
-
self.buf.clear()
|
| 188 |
-
continue # Move to the next token
|
| 189 |
-
|
| 190 |
-
# Check if token is within the expected audio range
|
| 191 |
-
if AUDIO_BASE <= t < AUDIO_BASE + AUDIO_SPAN:
|
| 192 |
-
self.buf.append(t - AUDIO_BASE) # Store value relative to base
|
| 193 |
-
# else: # Log unexpected tokens if needed
|
| 194 |
-
# print(f"Streamer Warning: Ignoring unexpected token {t} (outside audio range [{AUDIO_BASE}, {AUDIO_BASE + AUDIO_SPAN}))")
|
| 195 |
-
pass
|
| 196 |
-
|
| 197 |
-
# If buffer has 7 tokens, decode and send
|
| 198 |
-
if len(self.buf) == 7:
|
| 199 |
-
audio_bytes = self._decode_block(self.buf)
|
| 200 |
-
self.buf.clear() # Clear buffer after processing
|
| 201 |
-
|
| 202 |
-
if audio_bytes: # Only send if decoding was successful
|
| 203 |
-
# Schedule the async send function to run on the main event loop
|
| 204 |
-
future = asyncio.run_coroutine_threadsafe(self._send_audio_bytes(audio_bytes), self.loop)
|
| 205 |
-
self.tasks.add(future)
|
| 206 |
-
# Optional: Remove completed tasks to prevent memory leak if generation is very long
|
| 207 |
-
future.add_done_callback(self.tasks.discard)
|
| 208 |
-
|
| 209 |
-
# Allow EOS only after the first full block has been processed and scheduled for sending
|
| 210 |
-
if self.masker.sent_blocks == 0:
|
| 211 |
-
# print("Streamer: First audio block processed, allowing EOS.")
|
| 212 |
-
self.masker.sent_blocks = 1 # Update state in the mask
|
| 213 |
-
|
| 214 |
-
def end(self):
|
| 215 |
-
"""Called by generate() when generation finishes."""
|
| 216 |
-
if len(self.buf) > 0:
|
| 217 |
-
print(f"Streamer: End of generation with incomplete block ({len(self.buf)} tokens). Discarding.")
|
| 218 |
-
self.buf.clear()
|
| 219 |
-
# print(f"Streamer: Generation finished.") # Optional debugging
|
| 220 |
-
pass
|
| 221 |
-
|
| 222 |
-
# 5) FastAPI App ------------------------------------------------------
|
| 223 |
-
app = FastAPI()
|
| 224 |
|
| 225 |
-
@app.on_event("startup")
|
| 226 |
-
async def load_models_startup():
|
| 227 |
-
global tok, model, snac, masker, stopping_criteria, device, AUDIO_IDS_CPU, EOS_TOKEN
|
| 228 |
-
|
| 229 |
-
print(f"π Starting up on device: {device}")
|
| 230 |
-
print("β³ Lade Modelle β¦", flush=True)
|
| 231 |
-
|
| 232 |
-
tok = AutoTokenizer.from_pretrained(REPO)
|
| 233 |
-
print("Tokenizer loaded.")
|
| 234 |
-
|
| 235 |
-
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
| 236 |
-
print(f"SNAC loaded to {device}.")
|
| 237 |
-
|
| 238 |
-
model_dtype = torch.float32
|
| 239 |
-
if device == "cuda":
|
| 240 |
-
if torch.cuda.is_bf16_supported():
|
| 241 |
-
model_dtype = torch.bfloat16
|
| 242 |
-
print("Using bfloat16 for model.")
|
| 243 |
-
else:
|
| 244 |
-
model_dtype = torch.float16
|
| 245 |
-
print("Using float16 for model.")
|
| 246 |
-
|
| 247 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 248 |
-
REPO,
|
| 249 |
-
device_map={"": 0} if device == "cuda" else None,
|
| 250 |
-
torch_dtype=model_dtype,
|
| 251 |
-
low_cpu_mem_usage=True,
|
| 252 |
-
)
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
else:
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
| 278 |
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
audio_ids_device = AUDIO_IDS_CPU.to(device)
|
| 284 |
-
masker = AudioMask(audio_ids_device, NEW_BLOCK, EOS_TOKEN) # Use updated EOS_TOKEN
|
| 285 |
-
print("AudioMask initialized.")
|
| 286 |
|
| 287 |
-
|
| 288 |
-
|
| 289 |
|
| 290 |
-
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
def build_prompt(text: str, voice: str) -> tuple[torch.Tensor, torch.Tensor]:
|
| 298 |
-
"""Builds the input_ids and attention_mask for the model."""
|
| 299 |
-
prompt_text = f"{voice}: {text}"
|
| 300 |
-
prompt_ids = tok(prompt_text, return_tensors="pt").input_ids.to(device)
|
| 301 |
-
|
| 302 |
-
input_ids = torch.cat([
|
| 303 |
-
torch.tensor([[START_TOKEN]], device=device, dtype=torch.long),
|
| 304 |
-
prompt_ids,
|
| 305 |
-
torch.tensor([[NEW_BLOCK]], device=device, dtype=torch.long)
|
| 306 |
-
], dim=1)
|
| 307 |
-
|
| 308 |
-
attention_mask = torch.ones_like(input_ids)
|
| 309 |
-
return input_ids, attention_mask
|
| 310 |
-
|
| 311 |
-
# 7) WebSocketβEndpoint (vereinfacht mit Streamer) ---------------------
|
| 312 |
-
@app.websocket("/ws/tts")
|
| 313 |
-
async def tts(ws: WebSocket):
|
| 314 |
-
await ws.accept()
|
| 315 |
-
print("π Client connected")
|
| 316 |
-
streamer = None
|
| 317 |
-
main_loop = asyncio.get_running_loop()
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
# --- End Adjusted Parameters ---
|
| 351 |
-
use_cache=True,
|
| 352 |
-
streamer=streamer
|
| 353 |
)
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
except Exception as e:
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
-
print("Closing connection.")
|
| 381 |
-
if ws.client_state.name == "CONNECTED":
|
| 382 |
-
try:
|
| 383 |
-
await ws.close(code=1000)
|
| 384 |
-
except RuntimeError as e_close:
|
| 385 |
-
print(f"Runtime error closing websocket: {e_close}")
|
| 386 |
-
except Exception as e_close_final:
|
| 387 |
-
print(f"Error closing websocket: {e_close_final}")
|
| 388 |
-
elif ws.client_state.name != "DISCONNECTED":
|
| 389 |
-
print(f"WebSocket final state: {ws.client_state.name}")
|
| 390 |
-
print("Connection closed.")
|
| 391 |
-
|
| 392 |
-
# 8) DevβStart --------------------------------------------------------
|
| 393 |
if __name__ == "__main__":
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
if __name__ == "__main__":
|
| 2 |
+
print("Starting server")
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
# Enable or disable debug logging
|
| 6 |
+
DEBUG_LOGGING = False
|
| 7 |
+
|
| 8 |
+
if DEBUG_LOGGING:
|
| 9 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 10 |
+
else:
|
| 11 |
+
logging.basicConfig(level=logging.WARNING)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
from RealtimeTTS import (
|
| 15 |
+
TextToAudioStream,
|
| 16 |
+
AzureEngine,
|
| 17 |
+
ElevenlabsEngine,
|
| 18 |
+
SystemEngine,
|
| 19 |
+
CoquiEngine,
|
| 20 |
+
OpenAIEngine,
|
| 21 |
+
KokoroEngine
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
from RealtimeTTS import register_engine
|
| 25 |
+
|
| 26 |
+
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse
|
| 27 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 28 |
+
from fastapi import FastAPI, Query, Request
|
| 29 |
+
from fastapi.staticfiles import StaticFiles
|
| 30 |
+
|
| 31 |
+
from queue import Queue
|
| 32 |
+
import threading
|
| 33 |
+
import logging
|
| 34 |
+
import uvicorn
|
| 35 |
+
import wave
|
| 36 |
+
import io
|
| 37 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
PORT = int(os.environ.get("TTS_FASTAPI_PORT", 8000))
|
| 40 |
+
|
| 41 |
+
register_engine("orpheus", OrpheusEngine)
|
| 42 |
+
|
| 43 |
+
SUPPORTED_ENGINES = [
|
| 44 |
+
"azure",
|
| 45 |
+
"openai",
|
| 46 |
+
"elevenlabs",
|
| 47 |
+
"system",
|
| 48 |
+
# "coqui", #multiple queries are not supported on coqui engine right now, comment coqui out for tests where you need server start often,
|
| 49 |
+
"kokoro"
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
# change start engine by moving engine name
|
| 53 |
+
# to the first position in SUPPORTED_ENGINES
|
| 54 |
+
START_ENGINE = SUPPORTED_ENGINES[0]
|
| 55 |
+
|
| 56 |
+
BROWSER_IDENTIFIERS = [
|
| 57 |
+
"mozilla",
|
| 58 |
+
"chrome",
|
| 59 |
+
"safari",
|
| 60 |
+
"firefox",
|
| 61 |
+
"edge",
|
| 62 |
+
"opera",
|
| 63 |
+
"msie",
|
| 64 |
+
"trident",
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
origins = [
|
| 68 |
+
"http://localhost",
|
| 69 |
+
f"http://localhost:{PORT}",
|
| 70 |
+
"http://127.0.0.1",
|
| 71 |
+
f"http://127.0.0.1:{PORT}",
|
| 72 |
+
"https://localhost",
|
| 73 |
+
f"https://localhost:{PORT}",
|
| 74 |
+
"https://127.0.0.1",
|
| 75 |
+
f"https://127.0.0.1:{PORT}",
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
play_text_to_speech_semaphore = threading.Semaphore(1)
|
| 79 |
+
engines = {}
|
| 80 |
+
voices = {}
|
| 81 |
+
current_engine = None
|
| 82 |
+
speaking_lock = threading.Lock()
|
| 83 |
+
tts_lock = threading.Lock()
|
| 84 |
+
gen_lock = threading.Lock()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class TTSRequestHandler:
|
| 88 |
+
def __init__(self, engine):
|
| 89 |
+
self.engine = engine
|
| 90 |
+
self.audio_queue = Queue()
|
| 91 |
+
self.stream = TextToAudioStream(
|
| 92 |
+
engine, on_audio_stream_stop=self.on_audio_stream_stop, muted=True
|
| 93 |
+
)
|
| 94 |
+
self.speaking = False
|
| 95 |
+
|
| 96 |
+
def on_audio_chunk(self, chunk):
|
| 97 |
+
self.audio_queue.put(chunk)
|
| 98 |
+
|
| 99 |
+
def on_audio_stream_stop(self):
|
| 100 |
+
self.audio_queue.put(None)
|
| 101 |
+
self.speaking = False
|
| 102 |
+
|
| 103 |
+
def play_text_to_speech(self, text):
|
| 104 |
+
self.speaking = True
|
| 105 |
+
self.stream.feed(text)
|
| 106 |
+
logging.debug(f"Playing audio for text: {text}")
|
| 107 |
+
print(f'Synthesizing: "{text}"')
|
| 108 |
+
self.stream.play_async(on_audio_chunk=self.on_audio_chunk, muted=True)
|
| 109 |
+
|
| 110 |
+
def audio_chunk_generator(self, send_wave_headers):
|
| 111 |
+
first_chunk = False
|
| 112 |
try:
|
| 113 |
+
while True:
|
| 114 |
+
chunk = self.audio_queue.get()
|
| 115 |
+
if chunk is None:
|
| 116 |
+
print("Terminating stream")
|
| 117 |
+
break
|
| 118 |
+
if not first_chunk:
|
| 119 |
+
if send_wave_headers:
|
| 120 |
+
print("Sending wave header")
|
| 121 |
+
yield create_wave_header_for_engine(self.engine)
|
| 122 |
+
first_chunk = True
|
| 123 |
+
yield chunk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
except Exception as e:
|
| 125 |
+
print(f"Error during streaming: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
app = FastAPI()
|
| 129 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 130 |
+
app.add_middleware(
|
| 131 |
+
CORSMiddleware,
|
| 132 |
+
allow_origins=origins,
|
| 133 |
+
allow_credentials=True,
|
| 134 |
+
allow_methods=["*"],
|
| 135 |
+
allow_headers=["*"],
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Define a CSP that allows 'self' for script sources for firefox
|
| 139 |
+
csp = {
|
| 140 |
+
"default-src": "'self'",
|
| 141 |
+
"script-src": "'self'",
|
| 142 |
+
"style-src": "'self' 'unsafe-inline'",
|
| 143 |
+
"img-src": "'self' data:",
|
| 144 |
+
"font-src": "'self' data:",
|
| 145 |
+
"media-src": "'self' blob:",
|
| 146 |
+
}
|
| 147 |
+
csp_string = "; ".join(f"{key} {value}" for key, value in csp.items())
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
@app.middleware("http")
|
| 151 |
+
async def add_security_headers(request: Request, call_next):
|
| 152 |
+
response = await call_next(request)
|
| 153 |
+
response.headers["Content-Security-Policy"] = csp_string
|
| 154 |
+
return response
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
@app.get("/favicon.ico")
|
| 158 |
+
async def favicon():
|
| 159 |
+
return FileResponse("static/favicon.ico")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def _set_engine(engine_name):
|
| 163 |
+
global current_engine, stream
|
| 164 |
+
if current_engine is None:
|
| 165 |
+
current_engine = engines[engine_name]
|
| 166 |
else:
|
| 167 |
+
current_engine = engines[engine_name]
|
| 168 |
+
|
| 169 |
+
if voices[engine_name]:
|
| 170 |
+
engines[engine_name].set_voice(voices[engine_name][0].name)
|
| 171 |
+
|
| 172 |
|
| 173 |
+
@app.get("/set_engine")
|
| 174 |
+
def set_engine(request: Request, engine_name: str = Query(...)):
|
| 175 |
+
if engine_name not in engines:
|
| 176 |
+
return {"error": "Engine not supported"}
|
| 177 |
|
| 178 |
+
try:
|
| 179 |
+
_set_engine(engine_name)
|
| 180 |
+
return {"message": f"Switched to {engine_name} engine"}
|
| 181 |
+
except Exception as e:
|
| 182 |
+
logging.error(f"Error switching engine: {str(e)}")
|
| 183 |
+
return {"error": "Failed to switch engine"}
|
| 184 |
|
| 185 |
|
| 186 |
+
def is_browser_request(request):
|
| 187 |
+
user_agent = request.headers.get("user-agent", "").lower()
|
| 188 |
+
is_browser = any(browser_id in user_agent for browser_id in BROWSER_IDENTIFIERS)
|
| 189 |
+
return is_browser
|
| 190 |
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
def create_wave_header_for_engine(engine):
|
| 193 |
+
_, _, sample_rate = engine.get_stream_info()
|
| 194 |
|
| 195 |
+
num_channels = 1
|
| 196 |
+
sample_width = 2
|
| 197 |
+
frame_rate = sample_rate
|
| 198 |
|
| 199 |
+
wav_header = io.BytesIO()
|
| 200 |
+
with wave.open(wav_header, "wb") as wav_file:
|
| 201 |
+
wav_file.setnchannels(num_channels)
|
| 202 |
+
wav_file.setsampwidth(sample_width)
|
| 203 |
+
wav_file.setframerate(frame_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
wav_header.seek(0)
|
| 206 |
+
wave_header_bytes = wav_header.read()
|
| 207 |
+
wav_header.close()
|
| 208 |
+
|
| 209 |
+
# Create a new BytesIO with the correct MIME type for Firefox
|
| 210 |
+
final_wave_header = io.BytesIO()
|
| 211 |
+
final_wave_header.write(wave_header_bytes)
|
| 212 |
+
final_wave_header.seek(0)
|
| 213 |
+
|
| 214 |
+
return final_wave_header.getvalue()
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@app.get("/tts")
|
| 218 |
+
async def tts(request: Request, text: str = Query(...)):
|
| 219 |
+
with tts_lock:
|
| 220 |
+
request_handler = TTSRequestHandler(current_engine)
|
| 221 |
+
browser_request = is_browser_request(request)
|
| 222 |
+
|
| 223 |
+
if play_text_to_speech_semaphore.acquire(blocking=False):
|
| 224 |
+
try:
|
| 225 |
+
threading.Thread(
|
| 226 |
+
target=request_handler.play_text_to_speech,
|
| 227 |
+
args=(text,),
|
| 228 |
+
daemon=True,
|
| 229 |
+
).start()
|
| 230 |
+
finally:
|
| 231 |
+
play_text_to_speech_semaphore.release()
|
| 232 |
+
|
| 233 |
+
return StreamingResponse(
|
| 234 |
+
request_handler.audio_chunk_generator(browser_request),
|
| 235 |
+
media_type="audio/wav",
|
|
|
|
|
|
|
|
|
|
| 236 |
)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
@app.get("/engines")
|
| 240 |
+
def get_engines():
|
| 241 |
+
return list(engines.keys())
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
@app.get("/voices")
|
| 245 |
+
def get_voices():
|
| 246 |
+
voices_list = []
|
| 247 |
+
for voice in voices[current_engine.engine_name]:
|
| 248 |
+
voices_list.append(voice.name)
|
| 249 |
+
return voices_list
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
@app.get("/setvoice")
|
| 253 |
+
def set_voice(request: Request, voice_name: str = Query(...)):
|
| 254 |
+
print(f"Getting request: {voice_name}")
|
| 255 |
+
if not current_engine:
|
| 256 |
+
print("No engine is currently selected")
|
| 257 |
+
return {"error": "No engine is currently selected"}
|
| 258 |
+
|
| 259 |
+
try:
|
| 260 |
+
print(f"Setting voice to {voice_name}")
|
| 261 |
+
current_engine.set_voice(voice_name)
|
| 262 |
+
return {"message": f"Voice set to {voice_name} successfully"}
|
| 263 |
except Exception as e:
|
| 264 |
+
print(f"Error setting voice: {str(e)}")
|
| 265 |
+
logging.error(f"Error setting voice: {str(e)}")
|
| 266 |
+
return {"error": "Failed to set voice"}
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
@app.get("/")
|
| 270 |
+
def root_page():
|
| 271 |
+
engines_options = "".join(
|
| 272 |
+
[
|
| 273 |
+
f'<option value="{engine}">{engine.title()}</option>'
|
| 274 |
+
for engine in engines.keys()
|
| 275 |
+
]
|
| 276 |
+
)
|
| 277 |
+
content = f"""
|
| 278 |
+
<!DOCTYPE html>
|
| 279 |
+
<html>
|
| 280 |
+
<head>
|
| 281 |
+
<title>Text-To-Speech</title>
|
| 282 |
+
<style>
|
| 283 |
+
body {{
|
| 284 |
+
font-family: Arial, sans-serif;
|
| 285 |
+
background-color: #f0f0f0;
|
| 286 |
+
margin: 0;
|
| 287 |
+
padding: 0;
|
| 288 |
+
}}
|
| 289 |
+
h2 {{
|
| 290 |
+
color: #333;
|
| 291 |
+
text-align: center;
|
| 292 |
+
}}
|
| 293 |
+
#container {{
|
| 294 |
+
width: 80%;
|
| 295 |
+
margin: 50px auto;
|
| 296 |
+
background-color: #fff;
|
| 297 |
+
border-radius: 10px;
|
| 298 |
+
padding: 20px;
|
| 299 |
+
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
|
| 300 |
+
}}
|
| 301 |
+
label {{
|
| 302 |
+
font-weight: bold;
|
| 303 |
+
}}
|
| 304 |
+
select, textarea {{
|
| 305 |
+
width: 100%;
|
| 306 |
+
padding: 10px;
|
| 307 |
+
margin: 10px 0;
|
| 308 |
+
border: 1px solid #ccc;
|
| 309 |
+
border-radius: 5px;
|
| 310 |
+
box-sizing: border-box;
|
| 311 |
+
font-size: 16px;
|
| 312 |
+
}}
|
| 313 |
+
button {{
|
| 314 |
+
display: block;
|
| 315 |
+
width: 100%;
|
| 316 |
+
padding: 15px;
|
| 317 |
+
background-color: #007bff;
|
| 318 |
+
border: none;
|
| 319 |
+
border-radius: 5px;
|
| 320 |
+
color: #fff;
|
| 321 |
+
font-size: 16px;
|
| 322 |
+
cursor: pointer;
|
| 323 |
+
transition: background-color 0.3s;
|
| 324 |
+
}}
|
| 325 |
+
button:hover {{
|
| 326 |
+
background-color: #0056b3;
|
| 327 |
+
}}
|
| 328 |
+
audio {{
|
| 329 |
+
width: 80%;
|
| 330 |
+
margin: 10px auto;
|
| 331 |
+
display: block;
|
| 332 |
+
}}
|
| 333 |
+
</style>
|
| 334 |
+
</head>
|
| 335 |
+
<body>
|
| 336 |
+
<div id="container">
|
| 337 |
+
<h2>Text to Speech</h2>
|
| 338 |
+
<label for="engine">Select Engine:</label>
|
| 339 |
+
<select id="engine">
|
| 340 |
+
{engines_options}
|
| 341 |
+
</select>
|
| 342 |
+
<label for="voice">Select Voice:</label>
|
| 343 |
+
<select id="voice">
|
| 344 |
+
<!-- Options will be dynamically populated by JavaScript -->
|
| 345 |
+
</select>
|
| 346 |
+
<textarea id="text" rows="4" cols="50" placeholder="Enter text here..."></textarea>
|
| 347 |
+
<button id="speakButton">Speak</button>
|
| 348 |
+
<audio id="audio" controls></audio> <!-- Hidden audio player -->
|
| 349 |
+
</div>
|
| 350 |
+
<script src="/static/tts.js"></script>
|
| 351 |
+
</body>
|
| 352 |
+
</html>
|
| 353 |
+
"""
|
| 354 |
+
return HTMLResponse(content=content)
|
| 355 |
+
|
| 356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
if __name__ == "__main__":
|
| 358 |
+
print("Initializing TTS Engines")
|
| 359 |
+
|
| 360 |
+
for engine_name in SUPPORTED_ENGINES:
|
| 361 |
+
if "azure" == engine_name:
|
| 362 |
+
azure_api_key = os.environ.get("AZURE_SPEECH_KEY")
|
| 363 |
+
azure_region = os.environ.get("AZURE_SPEECH_REGION")
|
| 364 |
+
if azure_api_key and azure_region:
|
| 365 |
+
print("Initializing azure engine")
|
| 366 |
+
engines["azure"] = AzureEngine(azure_api_key, azure_region)
|
| 367 |
+
|
| 368 |
+
if "elevenlabs" == engine_name:
|
| 369 |
+
elevenlabs_api_key = os.environ.get("ELEVENLABS_API_KEY")
|
| 370 |
+
if elevenlabs_api_key:
|
| 371 |
+
print("Initializing elevenlabs engine")
|
| 372 |
+
engines["elevenlabs"] = ElevenlabsEngine(elevenlabs_api_key)
|
| 373 |
+
|
| 374 |
+
if "system" == engine_name:
|
| 375 |
+
print("Initializing system engine")
|
| 376 |
+
engines["system"] = SystemEngine()
|
| 377 |
+
|
| 378 |
+
if "coqui" == engine_name:
|
| 379 |
+
print("Initializing coqui engine")
|
| 380 |
+
engines["coqui"] = CoquiEngine()
|
| 381 |
+
|
| 382 |
+
if "kokoro" == engine_name:
|
| 383 |
+
print("Initializing kokoro engine")
|
| 384 |
+
engines["kokoro"] = KokoroEngine()
|
| 385 |
+
|
| 386 |
+
if "openai" == engine_name:
|
| 387 |
+
print("Initializing openai engine")
|
| 388 |
+
engines["openai"] = OpenAIEngine()
|
| 389 |
+
|
| 390 |
+
for _engine in engines.keys():
|
| 391 |
+
print(f"Retrieving voices for TTS Engine {_engine}")
|
| 392 |
+
try:
|
| 393 |
+
voices[_engine] = engines[_engine].get_voices()
|
| 394 |
+
except Exception as e:
|
| 395 |
+
voices[_engine] = []
|
| 396 |
+
logging.error(f"Error retrieving voices for {_engine}: {str(e)}")
|
| 397 |
+
|
| 398 |
+
_set_engine(START_ENGINE)
|
| 399 |
+
|
| 400 |
+
print("Server ready")
|
| 401 |
+
uvicorn.run(app, host="0.0.0.0", port=PORT)
|