Update app.py
Browse files
app.py
CHANGED
|
@@ -3,168 +3,130 @@ import json
|
|
| 3 |
import asyncio
|
| 4 |
import torch
|
| 5 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 6 |
-
from
|
| 7 |
-
from dotenv import load_dotenv
|
| 8 |
from snac import SNAC
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
-
from peft import PeftModel
|
| 11 |
|
| 12 |
-
# —
|
| 13 |
-
load_dotenv()
|
| 14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 15 |
if HF_TOKEN:
|
| 16 |
-
|
| 17 |
-
os.environ["HUGGINGFACE_HUB_TOKEN"] = HF_TOKEN
|
| 18 |
|
| 19 |
-
# —
|
| 20 |
-
app = FastAPI()
|
| 21 |
-
|
| 22 |
-
@app.get("/")
|
| 23 |
-
async def hello():
|
| 24 |
-
return PlainTextResponse("Hallo Welt!")
|
| 25 |
-
|
| 26 |
-
# — Device konfigurieren —
|
| 27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
|
| 29 |
-
# —
|
| 30 |
-
|
| 31 |
-
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
| 32 |
-
|
| 33 |
-
# — Orpheus/Kartoffel‑3B über PEFT laden —
|
| 34 |
-
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
| 35 |
-
print(f"Loading base LM + PEFT from {model_name}…")
|
| 36 |
-
base = AutoModelForCausalLM.from_pretrained(
|
| 37 |
-
model_name,
|
| 38 |
-
device_map="auto",
|
| 39 |
-
torch_dtype=torch.bfloat16,
|
| 40 |
-
)
|
| 41 |
-
model = PeftModel.from_pretrained(
|
| 42 |
-
base,
|
| 43 |
-
model_name,
|
| 44 |
-
device_map="auto",
|
| 45 |
-
)
|
| 46 |
-
model.eval()
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# — Hilfsfunktionen —
|
| 53 |
-
def
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
#
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
# Die Audio‑Token beginnen ab Offset 128266
|
| 87 |
-
return [(t.item() - 128266) for t in flat]
|
| 88 |
-
|
| 89 |
-
def decode_and_stream(tokens: list[int], ws: WebSocket):
|
| 90 |
-
"""Wandelt 7er‑Gruppen in Wave‑Samples um und streamt in 0.1 s Chunks."""
|
| 91 |
-
# gruppiere nach 7 und dekodiere jeweils
|
| 92 |
-
pcm16 = bytearray()
|
| 93 |
-
offset = 0
|
| 94 |
-
while offset + 7 <= len(tokens):
|
| 95 |
-
block = tokens[offset:offset+7]
|
| 96 |
-
offset += 7
|
| 97 |
-
|
| 98 |
-
# SNAC‑Input vorbereiten
|
| 99 |
-
# Layer‑1: direkt, Layer‑2/3 mit Offsets
|
| 100 |
-
l1, l2, l3 = [], [], []
|
| 101 |
-
l1.append(block[0])
|
| 102 |
-
l2.append(block[1] - 4096)
|
| 103 |
-
l3.append(block[2] - 2*4096)
|
| 104 |
-
l3.append(block[3] - 3*4096)
|
| 105 |
-
l2.append(block[4] - 4*4096)
|
| 106 |
-
l3.append(block[5] - 5*4096)
|
| 107 |
-
l3.append(block[6] - 6*4096)
|
| 108 |
-
|
| 109 |
-
t1 = torch.tensor(l1, device=device).unsqueeze(0)
|
| 110 |
-
t2 = torch.tensor(l2, device=device).unsqueeze(0)
|
| 111 |
-
t3 = torch.tensor(l3, device=device).unsqueeze(0)
|
| 112 |
-
audio = snac.decode([t1, t2, t3]).squeeze().cpu().numpy()
|
| 113 |
-
|
| 114 |
-
# in PCM16 @24 kHz
|
| 115 |
-
pcm = (audio * 32767).astype("int16").tobytes()
|
| 116 |
-
pcm16.extend(pcm)
|
| 117 |
-
|
| 118 |
-
# in 0.1 s‑Chunks (2400 Samples ×2 Bytes)
|
| 119 |
-
chunk_size = 2400 * 2
|
| 120 |
-
for i in range(0, len(pcm16), chunk_size):
|
| 121 |
-
ws.send_bytes(pcm16[i : i+chunk_size])
|
| 122 |
-
# ohne Pause kann das WebSocket überlastet werden
|
| 123 |
-
asyncio.sleep(0.1)
|
| 124 |
-
|
| 125 |
-
# — WebSocket TTS Endpoint —
|
| 126 |
@app.websocket("/ws/tts")
|
| 127 |
async def tts_ws(ws: WebSocket):
|
| 128 |
await ws.accept()
|
| 129 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
while True:
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
# Prompt vorbereiten
|
| 137 |
-
ids, mask = prepare_prompt(text, voice)
|
| 138 |
-
|
| 139 |
-
# Audio‑Token generieren
|
| 140 |
-
gen = model.generate(
|
| 141 |
-
input_ids=ids,
|
| 142 |
-
attention_mask=mask,
|
| 143 |
-
max_new_tokens=4000,
|
| 144 |
-
do_sample=True,
|
| 145 |
-
temperature=0.7,
|
| 146 |
-
top_p=0.95,
|
| 147 |
-
repetition_penalty=1.1,
|
| 148 |
-
eos_token_id=128258,
|
| 149 |
-
forced_bos_token_id=128259,
|
| 150 |
use_cache=True,
|
| 151 |
)
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
except WebSocketDisconnect:
|
| 162 |
-
|
|
|
|
| 163 |
except Exception as e:
|
|
|
|
| 164 |
print("Error in /ws/tts:", e)
|
| 165 |
await ws.close(code=1011)
|
| 166 |
-
|
| 167 |
-
# — Lokal starten —
|
| 168 |
-
if __name__ == "__main__":
|
| 169 |
-
import uvicorn
|
| 170 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
|
|
|
| 3 |
import asyncio
|
| 4 |
import torch
|
| 5 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 6 |
+
from huggingface_hub import login
|
|
|
|
| 7 |
from snac import SNAC
|
| 8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 9 |
|
| 10 |
+
# — HF‑Token & Login —
|
|
|
|
| 11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 12 |
if HF_TOKEN:
|
| 13 |
+
login(HF_TOKEN)
|
|
|
|
| 14 |
|
| 15 |
+
# — Device wählen —
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
| 18 |
+
# — FastAPI instanziieren —
|
| 19 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# — Hello‑Route, damit kein 404 bei GET / mehr kommt —
|
| 22 |
+
@app.get("/")
|
| 23 |
+
async def read_root():
|
| 24 |
+
return {"message": "Hello, world!"}
|
| 25 |
+
|
| 26 |
+
# — Modelle bei Startup laden —
|
| 27 |
+
@app.on_event("startup")
|
| 28 |
+
async def load_models():
|
| 29 |
+
global tokenizer, model, snac
|
| 30 |
+
# SNAC laden
|
| 31 |
+
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
| 32 |
+
# TTS‑Modell laden
|
| 33 |
+
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
model_name,
|
| 37 |
+
device_map={"": 0} if device == "cuda" else None,
|
| 38 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else None,
|
| 39 |
+
low_cpu_mem_usage=True
|
| 40 |
+
)
|
| 41 |
+
# Pad‑ID auf EOS einstellen
|
| 42 |
+
model.config.pad_token_id = model.config.eos_token_id
|
| 43 |
|
| 44 |
# — Hilfsfunktionen —
|
| 45 |
+
def prepare_inputs(text: str, voice: str):
|
| 46 |
+
prompt = f"{voice}: {text}"
|
| 47 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 48 |
+
# Start‑/End‑Marker
|
| 49 |
+
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
| 50 |
+
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
| 51 |
+
ids = torch.cat([start, input_ids, end], dim=1)
|
| 52 |
+
mask = torch.ones_like(ids)
|
| 53 |
+
return ids, mask
|
| 54 |
+
|
| 55 |
+
def decode_block(block_tokens: list[int]):
|
| 56 |
+
# aus 7 Tokens einen SNAC‑Decode‑Block bauen
|
| 57 |
+
layer1, layer2, layer3 = [], [], []
|
| 58 |
+
b = block_tokens
|
| 59 |
+
layer1.append(b[0])
|
| 60 |
+
layer2.append(b[1] - 4096)
|
| 61 |
+
layer3.append(b[2] - 2*4096)
|
| 62 |
+
layer3.append(b[3] - 3*4096)
|
| 63 |
+
layer2.append(b[4] - 4*4096)
|
| 64 |
+
layer3.append(b[5] - 5*4096)
|
| 65 |
+
layer3.append(b[6] - 6*4096)
|
| 66 |
+
codes = [
|
| 67 |
+
torch.tensor(layer1, device=device).unsqueeze(0),
|
| 68 |
+
torch.tensor(layer2, device=device).unsqueeze(0),
|
| 69 |
+
torch.tensor(layer3, device=device).unsqueeze(0),
|
| 70 |
+
]
|
| 71 |
+
# ergibt FloatTensor shape (1, N), @24 kHz
|
| 72 |
+
audio = snac.decode(codes).squeeze().cpu().numpy()
|
| 73 |
+
# in PCM16 umwandeln
|
| 74 |
+
return (audio * 32767).astype("int16").tobytes()
|
| 75 |
+
|
| 76 |
+
# — WebSocket Endpoint für TTS Streaming —
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
@app.websocket("/ws/tts")
|
| 78 |
async def tts_ws(ws: WebSocket):
|
| 79 |
await ws.accept()
|
| 80 |
try:
|
| 81 |
+
# erst die Anfrage als JSON empfangen
|
| 82 |
+
msg = await ws.receive_text()
|
| 83 |
+
req = json.loads(msg)
|
| 84 |
+
text = req.get("text", "")
|
| 85 |
+
voice = req.get("voice", "Jakob")
|
| 86 |
+
|
| 87 |
+
# Inputs bauen
|
| 88 |
+
input_ids, attention_mask = prepare_inputs(text, voice)
|
| 89 |
+
past_kvs = None
|
| 90 |
+
collected = []
|
| 91 |
+
|
| 92 |
+
# Token‑für‑Token loop
|
| 93 |
while True:
|
| 94 |
+
out = model(
|
| 95 |
+
input_ids=input_ids if past_kvs is None else None,
|
| 96 |
+
attention_mask=attention_mask if past_kvs is None else None,
|
| 97 |
+
past_key_values=past_kvs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
use_cache=True,
|
| 99 |
)
|
| 100 |
+
logits = out.logits[:, -1, :]
|
| 101 |
+
past_kvs = out.past_key_values
|
| 102 |
+
|
| 103 |
+
# Sampling
|
| 104 |
+
probs = torch.softmax(logits, dim=-1)
|
| 105 |
+
nxt = torch.multinomial(probs, num_samples=1).item()
|
| 106 |
+
|
| 107 |
+
# Ende, wenn EOS
|
| 108 |
+
if nxt == model.config.eos_token_id:
|
| 109 |
+
break
|
| 110 |
+
# Reset bei neuem Start‑Marker
|
| 111 |
+
if nxt == 128257:
|
| 112 |
+
collected = []
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
# Audio‑Code offsetten und sammeln
|
| 116 |
+
collected.append(nxt - 128266)
|
| 117 |
+
# sobald 7 Stück, direkt dekodieren und senden
|
| 118 |
+
if len(collected) == 7:
|
| 119 |
+
pcm = decode_block(collected)
|
| 120 |
+
collected = []
|
| 121 |
+
await ws.send_bytes(pcm)
|
| 122 |
+
|
| 123 |
+
# nach Ende sauber schließen
|
| 124 |
+
await ws.close()
|
| 125 |
|
| 126 |
except WebSocketDisconnect:
|
| 127 |
+
# Client hat disconnectet
|
| 128 |
+
pass
|
| 129 |
except Exception as e:
|
| 130 |
+
# bei Fehlern 1011 senden
|
| 131 |
print("Error in /ws/tts:", e)
|
| 132 |
await ws.close(code=1011)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|