Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,446 Bytes
ab48ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import gradio as gr
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
# Model configuration
MODEL_NAME = "osmosis-ai/Osmosis-Structure-0.6B"
# Global variables to store the model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the Osmosis Structure model and tokenizer"""
global model, tokenizer
try:
print("Loading Osmosis Structure model...")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
print("β
Osmosis Structure model loaded successfully!")
return True
except Exception as e:
print(f"β Error loading model: {e}")
return False
@spaces.GPU
def text_to_json(input_text, max_tokens=512, temperature=0.6, top_p=0.95, top_k=20):
"""Convert plain text to structured JSON using Osmosis Structure model"""
global model, tokenizer
if model is None or tokenizer is None:
return "β Model not loaded. Please wait for model initialization."
try:
# Create a structured prompt for JSON conversion
messages = [
{
"role": "system",
"content": "You are a helpful assistant that converts unstructured text into well-formatted JSON. Extract key information and organize it into a logical, structured format. Always respond with valid JSON."
},
{
"role": "user",
"content": f"Convert this text to JSON format:\n\n{input_text}"
}
]
# Apply chat template
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize the input
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=2048
)
# Move to device if using GPU
if torch.cuda.is_available():
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generation parameters based on model config
generation_config = {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": True,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id,
"repetition_penalty": 1.1,
}
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
**generation_config
)
# Decode the response
generated_tokens = outputs[0][len(inputs["input_ids"][0]):]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
# Clean up the response
generated_text = generated_text.strip()
# Try to extract JSON from the response
json_start = generated_text.find('{')
json_end = generated_text.rfind('}')
if json_start != -1 and json_end != -1 and json_end > json_start:
json_text = generated_text[json_start:json_end+1]
else:
# If no clear JSON boundaries, try to clean the whole response
json_text = generated_text
# Remove common prefixes
prefixes_to_remove = ["```json", "```", "Here's the JSON:", "JSON:", "```json\n"]
for prefix in prefixes_to_remove:
if json_text.startswith(prefix):
json_text = json_text[len(prefix):].strip()
# Remove common suffixes
suffixes_to_remove = ["```", "\n```"]
for suffix in suffixes_to_remove:
if json_text.endswith(suffix):
json_text = json_text[:-len(suffix)].strip()
# Validate and format JSON
try:
parsed_json = json.loads(json_text)
return json.dumps(parsed_json, indent=2, ensure_ascii=False)
except json.JSONDecodeError:
# If still not valid JSON, return the cleaned text with a note
return f"Generated response (may need manual cleanup):\n\n{json_text}"
except Exception as e:
return f"β Error generating JSON: {str(e)}"
# Create Gradio interface
def create_demo():
with gr.Blocks(
title="Osmosis Structure - Text to JSON Converter",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("""
# π Osmosis Structure - Text to JSON Converter
Convert unstructured text into well-formatted JSON using the Osmosis Structure 0.6B model.
This model is specifically trained for structured data extraction and format conversion.
""")
gr.Markdown("""
### βΉοΈ About Osmosis Structure
- **Model**: Osmosis Structure 0.6B parameters
- **Architecture**: Qwen3 (specialized for structured data)
- **Purpose**: Converting unstructured text to structured JSON format
- **Optimizations**: Fine-tuned for data extraction and format conversion tasks
The model automatically identifies key information in your text and organizes it into logical JSON structures.
""")
with gr.Row():
with gr.Column(scale=1):
input_text = gr.Textbox(
label="π Input Text",
placeholder="Enter your unstructured text here...\n\nExample: 'John Smith is a 30-year-old software engineer from New York. He works at Tech Corp and has 5 years of experience in Python development.'",
lines=8,
max_lines=15
)
with gr.Accordion("βοΈ Generation Settings", open=False):
max_tokens = gr.Slider(
minimum=50,
maximum=1000,
value=512,
step=10,
label="Max Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.6,
step=0.1,
label="Temperature",
info="Controls randomness (lower = more focused)"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling parameter"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=20,
step=1,
label="Top-k",
info="Limits vocabulary for generation"
)
convert_btn = gr.Button(
"π Convert to JSON",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
output_json = gr.Textbox(
label="π Generated JSON",
lines=15,
max_lines=20,
interactive=False,
show_copy_button=True
)
# Example inputs
gr.Markdown("### π Example Inputs")
examples = gr.Examples(
examples=[
["John Smith is a 30-year-old software engineer from New York. He works at Tech Corp and has 5 years of experience in Python development. His email is [email protected] and he graduated from MIT in 2018."],
["Order #12345 was placed on March 15, 2024. Customer: Sarah Johnson, Address: 123 Main St, Boston MA 02101. Items: 2x Laptop ($999 each), 1x Mouse ($25). Total: $2023. Status: Shipped via FedEx, tracking: 1234567890."],
["The conference will be held on June 10-12, 2024 at the Grand Hotel in San Francisco. Registration fee is $500 for early bird (before May 1) and $650 for regular registration. Contact [email protected] for questions."],
["Product: Wireless Headphones Model XYZ-100. Price: $199.99. Features: Bluetooth 5.0, 30-hour battery, noise cancellation, wireless charging case. Colors available: Black, White, Blue. Warranty: 2 years. Rating: 4.5/5 stars (324 reviews)."]
],
inputs=input_text,
label="Click on any example to try it"
)
# Event handlers
convert_btn.click(
fn=text_to_json,
inputs=[input_text, max_tokens, temperature, top_p, top_k],
outputs=output_json,
show_progress=True
)
# Allow Enter key to trigger conversion
input_text.submit(
fn=text_to_json,
inputs=[input_text, max_tokens, temperature, top_p, top_k],
outputs=output_json,
show_progress=True
)
return demo
# Initialize the demo
if __name__ == "__main__":
print("π Initializing Osmosis Structure Demo...")
# Load model at startup
if load_model():
print("π Creating Gradio interface...")
demo = create_demo()
demo.launch(
share=True,
show_error=True,
show_tips=True,
enable_queue=True,
ssr_mode=False,
mcp_server=True
)
else:
print("β Failed to load model. Please check your setup.") |