File size: 10,446 Bytes
ab48ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import gradio as gr
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces

# Model configuration
MODEL_NAME = "osmosis-ai/Osmosis-Structure-0.6B"

# Global variables to store the model and tokenizer
model = None
tokenizer = None

def load_model():
    """Load the Osmosis Structure model and tokenizer"""
    global model, tokenizer
    
    try:
        print("Loading Osmosis Structure model...")
        
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_NAME,
            trust_remote_code=True
        )
        
        # Load model
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_NAME,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            device_map="auto" if torch.cuda.is_available() else None,
            trust_remote_code=True
        )
        
        print("βœ… Osmosis Structure model loaded successfully!")
        return True
        
    except Exception as e:
        print(f"❌ Error loading model: {e}")
        return False

@spaces.GPU
def text_to_json(input_text, max_tokens=512, temperature=0.6, top_p=0.95, top_k=20):
    """Convert plain text to structured JSON using Osmosis Structure model"""
    global model, tokenizer
    
    if model is None or tokenizer is None:
        return "❌ Model not loaded. Please wait for model initialization."
    
    try:
        # Create a structured prompt for JSON conversion
        messages = [
            {
                "role": "system",
                "content": "You are a helpful assistant that converts unstructured text into well-formatted JSON. Extract key information and organize it into a logical, structured format. Always respond with valid JSON."
            },
            {
                "role": "user", 
                "content": f"Convert this text to JSON format:\n\n{input_text}"
            }
        ]
        
        # Apply chat template
        formatted_prompt = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        
        # Tokenize the input
        inputs = tokenizer(
            formatted_prompt,
            return_tensors="pt",
            truncation=True,
            max_length=2048
        )
        
        # Move to device if using GPU
        if torch.cuda.is_available():
            inputs = {k: v.to(model.device) for k, v in inputs.items()}
        
        # Generation parameters based on model config
        generation_config = {
            "max_new_tokens": max_tokens,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "do_sample": True,
            "pad_token_id": tokenizer.pad_token_id,
            "eos_token_id": tokenizer.eos_token_id,
            "repetition_penalty": 1.1,
        }
        
        # Generate response
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                **generation_config
            )
        
        # Decode the response
        generated_tokens = outputs[0][len(inputs["input_ids"][0]):]
        generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
        
        # Clean up the response
        generated_text = generated_text.strip()
        
        # Try to extract JSON from the response
        json_start = generated_text.find('{')
        json_end = generated_text.rfind('}')
        
        if json_start != -1 and json_end != -1 and json_end > json_start:
            json_text = generated_text[json_start:json_end+1]
        else:
            # If no clear JSON boundaries, try to clean the whole response
            json_text = generated_text
            
            # Remove common prefixes
            prefixes_to_remove = ["```json", "```", "Here's the JSON:", "JSON:", "```json\n"]
            for prefix in prefixes_to_remove:
                if json_text.startswith(prefix):
                    json_text = json_text[len(prefix):].strip()
            
            # Remove common suffixes
            suffixes_to_remove = ["```", "\n```"]
            for suffix in suffixes_to_remove:
                if json_text.endswith(suffix):
                    json_text = json_text[:-len(suffix)].strip()
        
        # Validate and format JSON
        try:
            parsed_json = json.loads(json_text)
            return json.dumps(parsed_json, indent=2, ensure_ascii=False)
        except json.JSONDecodeError:
            # If still not valid JSON, return the cleaned text with a note
            return f"Generated response (may need manual cleanup):\n\n{json_text}"
            
    except Exception as e:
        return f"❌ Error generating JSON: {str(e)}"

# Create Gradio interface
def create_demo():
    with gr.Blocks(
        title="Osmosis Structure - Text to JSON Converter",
        theme=gr.themes.Soft()
    ) as demo:
        
        gr.Markdown("""
        # 🌊 Osmosis Structure - Text to JSON Converter
        
        Convert unstructured text into well-formatted JSON using the Osmosis Structure 0.6B model.
        This model is specifically trained for structured data extraction and format conversion.
        """)
                
        gr.Markdown("""
        ### ℹ️ About Osmosis Structure
        
        - **Model**: Osmosis Structure 0.6B parameters
        - **Architecture**: Qwen3 (specialized for structured data)
        - **Purpose**: Converting unstructured text to structured JSON format
        - **Optimizations**: Fine-tuned for data extraction and format conversion tasks
        
        The model automatically identifies key information in your text and organizes it into logical JSON structures.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                input_text = gr.Textbox(
                    label="πŸ“ Input Text",
                    placeholder="Enter your unstructured text here...\n\nExample: 'John Smith is a 30-year-old software engineer from New York. He works at Tech Corp and has 5 years of experience in Python development.'",
                    lines=8,
                    max_lines=15
                )
                
                with gr.Accordion("βš™οΈ Generation Settings", open=False):
                    max_tokens = gr.Slider(
                        minimum=50,
                        maximum=1000,
                        value=512,
                        step=10,
                        label="Max Tokens",
                        info="Maximum number of tokens to generate"
                    )
                    
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.6,
                        step=0.1,
                        label="Temperature",
                        info="Controls randomness (lower = more focused)"
                    )
                    
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        label="Top-p",
                        info="Nucleus sampling parameter"
                    )
                    
                    top_k = gr.Slider(
                        minimum=1,
                        maximum=100,
                        value=20,
                        step=1,
                        label="Top-k",
                        info="Limits vocabulary for generation"
                    )
                
                convert_btn = gr.Button(
                    "πŸ”„ Convert to JSON",
                    variant="primary",
                    size="lg"
                )
                
            with gr.Column(scale=1):
                output_json = gr.Textbox(
                    label="πŸ“‹ Generated JSON",
                    lines=15,
                    max_lines=20,
                    interactive=False,
                    show_copy_button=True
                )
        
        # Example inputs
        gr.Markdown("### πŸ“š Example Inputs")
        examples = gr.Examples(
            examples=[
                ["John Smith is a 30-year-old software engineer from New York. He works at Tech Corp and has 5 years of experience in Python development. His email is [email protected] and he graduated from MIT in 2018."],
                ["Order #12345 was placed on March 15, 2024. Customer: Sarah Johnson, Address: 123 Main St, Boston MA 02101. Items: 2x Laptop ($999 each), 1x Mouse ($25). Total: $2023. Status: Shipped via FedEx, tracking: 1234567890."],
                ["The conference will be held on June 10-12, 2024 at the Grand Hotel in San Francisco. Registration fee is $500 for early bird (before May 1) and $650 for regular registration. Contact [email protected] for questions."],
                ["Product: Wireless Headphones Model XYZ-100. Price: $199.99. Features: Bluetooth 5.0, 30-hour battery, noise cancellation, wireless charging case. Colors available: Black, White, Blue. Warranty: 2 years. Rating: 4.5/5 stars (324 reviews)."]
            ],
            inputs=input_text,
            label="Click on any example to try it"
        )
        
        # Event handlers
        convert_btn.click(
            fn=text_to_json,
            inputs=[input_text, max_tokens, temperature, top_p, top_k],
            outputs=output_json,
            show_progress=True
        )
        
        # Allow Enter key to trigger conversion
        input_text.submit(
            fn=text_to_json,
            inputs=[input_text, max_tokens, temperature, top_p, top_k],
            outputs=output_json,
            show_progress=True
        )
    
    return demo

# Initialize the demo
if __name__ == "__main__":
    print("🌊 Initializing Osmosis Structure Demo...")
    
    # Load model at startup
    if load_model():
        print("πŸš€ Creating Gradio interface...")
        demo = create_demo()
        demo.launch(
            share=True,
            show_error=True,
            show_tips=True,
            enable_queue=True,
            ssr_mode=False,
            mcp_server=True
        )
    else:
        print("❌ Failed to load model. Please check your setup.")