Math / app.py
Tonic's picture
attempts to improve mcp
baa3c78 verified
import spaces
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import json
title = "# ๐Ÿ™‹๐Ÿปโ€โ™‚๏ธWelcome to ๐ŸŒŸTonic's ๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌMoonshot Math"
description = """
**๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌAI-MO/Kimina-Prover-Distill-8B** is a theorem proving model developed by Project Numina and Kimi teams, focusing on competition style problem solving capabilities in Lean 4. It is a distillation of AI-MO/Kimina-Prover-72B, a model trained via large scale reinforcement learning. It achieves 77.86% accuracy with Pass@32 on MiniF2F-test.\
- [Kimina-Prover-Preview GitHub](https://github.com/MoonshotAI/Kimina-Prover-Preview)\
- [Hugging Face: AI-MO/Kimina-Prover-72B](https://huggingface.co/AI-MO/Kimina-Prover-72B)\
- [Kimina Prover blog](https://huggingface.co/blog/AI-MO/kimina-prover)\
- [unimath dataset](https://huggingface.co/datasets/introspector/unimath)\
"""
citation = """> **Citation:**
> ```
> @article{kimina_prover_2025,
> title = {Kimina-Prover Preview: Towards Large Formal Reasoning Models with Reinforcement Learning},
> author = {Wang, Haiming and Unsal, Mert and ...},
> year = {2025},
> url = {http://arxiv.org/abs/2504.11354},
> }
> ```
"""
joinus = """
## Join us :
๐ŸŒŸTeamTonic๐ŸŒŸ is always making cool demos! Join our active builder's ๐Ÿ› ๏ธcommunity ๐Ÿ‘ป [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On ๐Ÿค—Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On ๐ŸŒGithub: [Tonic-AI](https://github.com/tonic-ai) & contribute to๐ŸŒŸ [MultiTonic](https://github.com/MultiTonic)๐Ÿค—Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant ๐Ÿค—
"""
SYSTEM_PROMPT = "You are an expert in mathematics and Lean 4."
LEAN4_DEFAULT_HEADER = (
"import Mathlib\n"
"import Aesop\n\n"
"set_option maxHeartbeats 0\n\n"
"open BigOperators Real Nat Topology Rat\n"
)
unimath1 = """Goal:
X : UU
Y : UU
P : UU
xp : (X โ†’ P) โ†’ P
yp : (Y โ†’ P) โ†’ P
X0 : X ร— Y โ†’ P
x : X
============================
(Y โ†’ P)"""
unimath2 = """Goal:
R : ring M : module R
============================
(islinear (idfun M))"""
unimath3 = """Goal:
X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i
============================
(pr1 lastelement = pr1 (i,, b))"""
unimath4 = """Goal:
X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X
============================
(x โŠ‘ y โ‰ƒ (โˆ€ i : approximating_family CX x, approximating_family CX x i โŠ‘ y))"""
additional_info_prompt = "/-Explain using mathematics-/\n"
def build_formal_block(formal_statement, informal_prefix=""):
return (
f"{LEAN4_DEFAULT_HEADER}\n"
f"{informal_prefix}\n"
f"{formal_statement}"
)
def extract_lean4_code(text):
code_block = re.search(r"```lean4(.*?)(```|$)", text, re.DOTALL)
if code_block:
code = code_block.group(1)
lines = [line for line in code.split('\n') if line.strip()]
return '\n'.join(lines)
return text.strip()
examples = [
[unimath1, additional_info_prompt, 1234],
[unimath2, additional_info_prompt, 1234],
[unimath3, additional_info_prompt, 1234],
[unimath4, additional_info_prompt, 1234],
[
'''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- Let $a_1, a_2,\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$-/\ntheorem imo_1969_p2 (m n : \\R) (k : \\N) (a : \\N \\rightarrow \\R) (y : \\R \\rightarrow \\R) (hโ‚€ : 0 < k)\n(hโ‚ : \\forall x, y x = \\sum i in Finset.range k, Real.cos (a i + x) / 2 ^ i) (hโ‚‚ : y m = 0)\n(hโ‚ƒ : y n = 0) : \\exists t : \\Z, m - n = t * Real.pi := by''',
"/-- Let $a_1, a_2,\\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$-/",
2500
],
[
'''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- Suppose that $h(x)=f^{-1}(x)$. If $h(2)=10$, $h(10)=1$ and $h(1)=2$, what is $f(f(10))$? Show that it is 1.-/\ntheorem mathd_algebra_209 (ฯƒ : Equiv \\R \\R) (hโ‚€ : ฯƒ.2 2 = 10) (hโ‚ : ฯƒ.2 10 = 1) (hโ‚‚ : ฯƒ.2 1 = 2) :\nฯƒ.1 (ฯƒ.1 10) = 1 := by''',
"/-- Suppose that $h(x)=f^{-1}(x)$. If $h(2)=10$, $h(10)=1$ and $h(1)=2$, what is $f(f(10))$? Show that it is 1.-/",
2500
],
[
'''import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n/-- At which point do the lines $s=9-2t$ and $t=3s+1$ intersect? Give your answer as an ordered pair in the form $(s, t).$ Show that it is (1,4).-//\ntheorem mathd_algebra_44 (s t : \\R) (hโ‚€ : s = 9 - 2 * t) (hโ‚ : t = 3 * s + 1) : s = 1 \\wedge t = 4 := by''',
"/-- At which point do the lines $s=9-2t$ and $t=3s+1$ intersect? Give your answer as an ordered pair in the form $(s, t).$ Show that it is (1,4).-/",
2500
],
]
model_name = "AI-MO/Kimina-Prover-Distill-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained(model_name)
if isinstance(model.generation_config.eos_token_id, list):
model.generation_config.pad_token_id = model.generation_config.eos_token_id[0]
else:
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.generation_config.do_sample = True
model.generation_config.temperature = 0.6
model.generation_config.top_p = 0.95
def init_chat(formal_statement, informal_prefix):
user_prompt = (
"Think about and solve the following problem step by step in Lean 4.\n"
"# Problem: Provide a formal proof for the following statement.\n"
f"# Formal statement:\n```lean4\n{build_formal_block(formal_statement, informal_prefix)}\n```\n"
)
return [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_prompt}
]
@spaces.GPU
def chat_handler(
user_message: str,
informal_prefix: str = "/-Explain using mathematics-/\n",
max_tokens: int = 2500,
chat_history: list = None
):
"""
Handles a single chat interaction with the Kimina Prover model designed for competition-style problem solving it is capable of both formal and informal mathematical reasoning and problem solving.
Args:
user_message (str): The user's input message or formal statement to be solved or discussed by the model. This can be a Lean 4 goal, theorem, or mathematical problem statement.
informal_prefix (str, optional): An optional informal explanation or context to prepend to the formal statement. Defaults to '/-Explain using mathematics-/\n'.
max_tokens (int, optional): The maximum number of tokens to generate in the model's response. Must be between 150 and 4096. Defaults to 2500.
chat_history (list, optional): The conversation history as a list of message dicts, each with 'role' and 'content'. Used to maintain context across turns. Defaults to None.
Returns:
tuple: (
display_history (list of tuples): List of (role, content) pairs for display in the chat UI.
output_data_json (str): JSON string containing model input, output, extracted Lean4 code, and updated chat history.
code (str): Extracted Lean4 code from the model's response, if present.
chat_history (list): Updated chat history including the latest user and assistant messages.
)
Example:
>>> user_message = "Goal:\n X : UU\n Y : UU\n P : UU\n xp : (X โ†’ P) โ†’ P\n yp : (Y โ†’ P) โ†’ P\n X0 : X ร— Y โ†’ P\n x : X\n ============================\n (Y โ†’ P)"
>>> informal_prefix = "/-Explain using mathematics-/\n"
>>> max_tokens = 1234
>>> chat_history = None
>>> display_history, output_data_json, code, chat_history = chat_handler(user_message, informal_prefix, max_tokens, chat_history)
# display_history contains the chat turns, output_data_json contains the full model output, code contains extracted Lean4 code.
"""
if not chat_history or len(chat_history) < 2:
chat_history = init_chat(user_message, informal_prefix)
display_history = [("user", user_message)]
else:
chat_history.append({"role": "user", "content": user_message})
display_history = []
for msg in chat_history:
if msg["role"] == "user":
display_history.append(("user", msg["content"]))
elif msg["role"] == "assistant":
display_history.append(("assistant", msg["content"]))
prompt = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_tokens + input_ids.shape[1],
pad_token_id=model.generation_config.pad_token_id,
temperature=model.generation_config.temperature,
top_p=model.generation_config.top_p,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
new_response = result[len(prompt):].strip()
chat_history.append({"role": "assistant", "content": new_response})
display_history.append(("assistant", new_response))
code = extract_lean4_code(new_response)
output_data = {
"model_input": prompt,
"model_output": result,
"lean4_code": code,
"chat_history": chat_history
}
return display_history, json.dumps(output_data, indent=2), code, chat_history
def main():
with gr.Blocks() as demo:
gr.Markdown("""# ๐Ÿ™‹๐Ÿปโ€โ™‚๏ธWelcome to ๐ŸŒŸTonic's ๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌMoonshot Math""")
with gr.Row():
with gr.Column():
gr.Markdown(description)
with gr.Column():
gr.Markdown(joinus)
with gr.Row():
with gr.Column():
user_input = gr.Textbox(label="๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ปYour message or formal statement", lines=4)
informal = gr.Textbox(value=additional_info_prompt, label="๐Ÿ’๐Ÿปโ€โ™‚๏ธOptional informal prefix")
max_tokens = gr.Slider(minimum=150, maximum=4096, value=2500, label="๐Ÿช™Max Tokens")
submit = gr.Button("Send")
with gr.Column():
chat = gr.Chatbot(label="๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌKimina Prover 8B")
with gr.Accordion("Complete Output", open=False):
json_out = gr.JSON(label="Full Output")
code_out = gr.Code(label="Extracted Lean4 Code", language="python")
state = gr.State([])
submit.click(chat_handler, [user_input, informal, max_tokens, state], [chat, json_out, code_out, state])
gr.Examples(
examples=examples,
inputs=[user_input, informal, max_tokens],
label="๐Ÿคฆ๐Ÿปโ€โ™‚๏ธExample Problems"
)
gr.Markdown(citation)
demo.launch(ssr_mode=False, mcp_server=True)
if __name__ == "__main__":
main()