Spaces:
Running
Running
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| title = """# ππ»ββοΈ Welcome to Tonic's Minitron-8B-Base""" | |
| # Load the tokenizer and model | |
| model_path = "nvidia/Minitron-8B-Base" | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| device='cuda' | |
| dtype=torch.bfloat16 | |
| model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
| # Define the prompt format | |
| def create_prompt(instruction): | |
| PROMPT = '''You are TronTonic an AI created by Tonic-AI. Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:''' | |
| return PROMPT.format(instruction=instruction) | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| prompt = create_prompt(message) | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) | |
| output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1) | |
| output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| return output_text | |
| demo = gr.ChatInterface( | |
| gr.markdown(title), | |
| # gr.markdown(description), | |
| respond, | |
| additional_inputs=[ | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |