Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| title = """# ππ»ββοΈ Welcome to Tonic's Minitron-8B-Base""" | |
| description = """ | |
| Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models. | |
| ### Join us : | |
| πTeamTonicπ is always making cool demos! Join our active builder's π οΈcommunity π» [](https://discord.gg/GWpVpekp) On π€Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On πGithub: [Tonic-AI](https://github.com/tonic-ai) & contribute toπ [BuildTonic](https://github.com/buildtonic/)π€Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant π€ | |
| """ | |
| # Load the tokenizer and model | |
| model_path = "nvidia/Minitron-8B-Base" | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| device='cuda' | |
| dtype=torch.bfloat16 | |
| model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
| # Define the prompt format | |
| def create_prompt(instruction): | |
| PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:''' | |
| return PROMPT.format(instruction=instruction) | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| prompt = create_prompt(message) | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) | |
| output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1) | |
| output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| return output_text | |
| demo = gr.ChatInterface( | |
| title=gr.Markdown(title), | |
| # description=gr.Markdown(description), | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are Minitron an AI assistant created by Tonic-AI", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |