Spaces:
Runtime error
Runtime error
add Nemo-Mistral-Minitron / Gradio 5
Browse files
README.md
CHANGED
|
@@ -4,11 +4,14 @@ emoji: π π€ππ»
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: mit
|
| 11 |
short_description: 'MiniNemo : High Performance With a SOTA Compression by Nvidia'
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.0.0b5
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: mit
|
| 11 |
short_description: 'MiniNemo : High Performance With a SOTA Compression by Nvidia'
|
| 12 |
+
short_description: State-of-the-Art Performance With a SOTA Compression
|
| 13 |
+
thumbnail: >-
|
| 14 |
+
https://cdn-uploads.huggingface.co/production/uploads/62a3bb1cd0d8c2c2169f0b88/tJn4I1ea2HlGIbiNqM-xw.png
|
| 15 |
---
|
| 16 |
|
| 17 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,17 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 4 |
-
import json
|
| 5 |
from globe import title, description, customtool , presentation1, presentation2, joinus
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
-
model_path = "nvidia/
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 10 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def create_prompt(system_message, user_message, tool_definition="", context=""):
|
| 17 |
if tool_definition:
|
|
@@ -35,13 +41,10 @@ def create_prompt(system_message, user_message, tool_definition="", context=""):
|
|
| 35 |
@spaces.GPU
|
| 36 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p, use_pipeline=False, tool_definition="", context=""):
|
| 37 |
full_prompt = create_prompt(system_message, message, tool_definition, context)
|
| 38 |
-
|
| 39 |
if use_pipeline:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
{"role": "user", "content": message},
|
| 43 |
-
]
|
| 44 |
-
response = pipe(messages, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p)[0]['generated_text']
|
| 45 |
else:
|
| 46 |
tokenized_chat = tokenizer.apply_chat_template(
|
| 47 |
[
|
|
@@ -55,7 +58,7 @@ def generate_response(message, history, system_message, max_tokens, temperature,
|
|
| 55 |
|
| 56 |
with torch.no_grad():
|
| 57 |
output_ids = model.generate(
|
| 58 |
-
tokenized_chat,
|
| 59 |
max_new_tokens=max_tokens,
|
| 60 |
temperature=temperature,
|
| 61 |
top_p=top_p,
|
|
@@ -63,30 +66,30 @@ def generate_response(message, history, system_message, max_tokens, temperature,
|
|
| 63 |
)
|
| 64 |
|
| 65 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 66 |
-
|
| 67 |
assistant_response = response.split("<extra_id_1>Assistant\n")[-1].strip()
|
| 68 |
-
|
| 69 |
if tool_definition and "<toolcall>" in assistant_response:
|
| 70 |
tool_call = assistant_response.split("<toolcall>")[1].split("</toolcall>")[0]
|
| 71 |
assistant_response += f"\n\nTool Call: {tool_call}\n\nNote: This is a simulated tool call. In a real scenario, the tool would be executed and its output would be used to generate a final response."
|
| 72 |
-
|
| 73 |
return assistant_response
|
| 74 |
|
| 75 |
with gr.Blocks() as demo:
|
| 76 |
with gr.Row():
|
| 77 |
gr.Markdown(title)
|
| 78 |
with gr.Row():
|
| 79 |
-
gr.Markdown(description)
|
| 80 |
with gr.Row():
|
| 81 |
-
with gr.
|
| 82 |
-
gr.
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
with gr.Row():
|
| 88 |
with gr.Column(scale=3):
|
| 89 |
-
chatbot = gr.Chatbot(label="π€
|
| 90 |
msg = gr.Textbox(label="User Input", placeholder="Ask a question or request a task...")
|
| 91 |
with gr.Accordion(label="π§ͺAdvanced Settings", open=False):
|
| 92 |
system_message = gr.Textbox(
|
|
@@ -103,12 +106,12 @@ with gr.Blocks() as demo:
|
|
| 103 |
max_tokens = gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens")
|
| 104 |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
| 105 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 106 |
-
use_pipeline = gr.Checkbox(label="Use
|
| 107 |
-
use_tool = gr.Checkbox(label="Use Function
|
| 108 |
with gr.Column(visible=False) as tool_options:
|
| 109 |
tool_definition = gr.Code(
|
| 110 |
-
label="
|
| 111 |
-
value=
|
| 112 |
lines=15,
|
| 113 |
language="json"
|
| 114 |
)
|
|
@@ -116,7 +119,6 @@ with gr.Blocks() as demo:
|
|
| 116 |
clear = gr.Button("Clear")
|
| 117 |
send = gr.Button("Send")
|
| 118 |
|
| 119 |
-
|
| 120 |
def user(user_message, history):
|
| 121 |
return "", history + [[user_message, None]]
|
| 122 |
|
|
@@ -141,4 +143,5 @@ with gr.Blocks() as demo:
|
|
| 141 |
)
|
| 142 |
|
| 143 |
if __name__ == "__main__":
|
| 144 |
-
demo.
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 4 |
from globe import title, description, customtool , presentation1, presentation2, joinus
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
+
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Instruct"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 9 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 10 |
|
| 11 |
+
# Extract config info from model's configuration
|
| 12 |
+
config_info = model.config
|
| 13 |
+
|
| 14 |
+
# Create a Markdown string to display the complete model configuration information
|
| 15 |
+
model_info_md = "### Model Configuration: Mistral-NeMo-Minitron-8B-Instruct\n\n"
|
| 16 |
+
for key, value in config_info.to_dict().items():
|
| 17 |
+
model_info_md += f"- **{key.replace('_', ' ').capitalize()}**: {value}\n"
|
| 18 |
+
|
| 19 |
+
pipe = pipeline("text-generation", model=model)
|
| 20 |
+
pipe.tokenizer = tokenizer
|
| 21 |
|
| 22 |
def create_prompt(system_message, user_message, tool_definition="", context=""):
|
| 23 |
if tool_definition:
|
|
|
|
| 41 |
@spaces.GPU
|
| 42 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p, use_pipeline=False, tool_definition="", context=""):
|
| 43 |
full_prompt = create_prompt(system_message, message, tool_definition, context)
|
| 44 |
+
|
| 45 |
if use_pipeline:
|
| 46 |
+
prompt = [{"role": "system", "content": system_message}, {"role": "user", "content": message}]
|
| 47 |
+
response = pipe(prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stop_strings=["<extra_id_1>"])[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
| 48 |
else:
|
| 49 |
tokenized_chat = tokenizer.apply_chat_template(
|
| 50 |
[
|
|
|
|
| 58 |
|
| 59 |
with torch.no_grad():
|
| 60 |
output_ids = model.generate(
|
| 61 |
+
tokenized_chat['input_ids'],
|
| 62 |
max_new_tokens=max_tokens,
|
| 63 |
temperature=temperature,
|
| 64 |
top_p=top_p,
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 69 |
+
|
| 70 |
assistant_response = response.split("<extra_id_1>Assistant\n")[-1].strip()
|
| 71 |
+
|
| 72 |
if tool_definition and "<toolcall>" in assistant_response:
|
| 73 |
tool_call = assistant_response.split("<toolcall>")[1].split("</toolcall>")[0]
|
| 74 |
assistant_response += f"\n\nTool Call: {tool_call}\n\nNote: This is a simulated tool call. In a real scenario, the tool would be executed and its output would be used to generate a final response."
|
| 75 |
+
|
| 76 |
return assistant_response
|
| 77 |
|
| 78 |
with gr.Blocks() as demo:
|
| 79 |
with gr.Row():
|
| 80 |
gr.Markdown(title)
|
| 81 |
with gr.Row():
|
| 82 |
+
gr.Markdown(description)
|
| 83 |
with gr.Row():
|
| 84 |
+
with gr.Column(scale=1):
|
| 85 |
+
with gr.Group():
|
| 86 |
+
gr.Markdown(presentation1)
|
| 87 |
+
with gr.Column(scale=1):
|
| 88 |
+
with gr.Group():
|
| 89 |
+
gr.Markdown(model_info_md)
|
| 90 |
with gr.Row():
|
| 91 |
with gr.Column(scale=3):
|
| 92 |
+
chatbot = gr.Chatbot(label="π€ Mistral-NeMo", height=400)
|
| 93 |
msg = gr.Textbox(label="User Input", placeholder="Ask a question or request a task...")
|
| 94 |
with gr.Accordion(label="π§ͺAdvanced Settings", open=False):
|
| 95 |
system_message = gr.Textbox(
|
|
|
|
| 106 |
max_tokens = gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens")
|
| 107 |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
| 108 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 109 |
+
use_pipeline = gr.Checkbox(label="Use Pipeline", value=False)
|
| 110 |
+
use_tool = gr.Checkbox(label="Use Function Calling", value=False)
|
| 111 |
with gr.Column(visible=False) as tool_options:
|
| 112 |
tool_definition = gr.Code(
|
| 113 |
+
label="Tool Definition (JSON)",
|
| 114 |
+
value="{}",
|
| 115 |
lines=15,
|
| 116 |
language="json"
|
| 117 |
)
|
|
|
|
| 119 |
clear = gr.Button("Clear")
|
| 120 |
send = gr.Button("Send")
|
| 121 |
|
|
|
|
| 122 |
def user(user_message, history):
|
| 123 |
return "", history + [[user_message, None]]
|
| 124 |
|
|
|
|
| 143 |
)
|
| 144 |
|
| 145 |
if __name__ == "__main__":
|
| 146 |
+
demo.queue
|
| 147 |
+
demo.launch()
|
globe.py
CHANGED
|
@@ -3,16 +3,14 @@ joinus = """
|
|
| 3 |
πTeamTonicπ is always making cool demos! Join our active builder's π οΈcommunity π» [](https://discord.gg/qdfnvSPcqP) On π€Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On πGithub: [Tonic-AI](https://github.com/tonic-ai) & contribute toπ [Build Tonic](https://git.tonic-ai.com/contribute)π€Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant π€
|
| 4 |
"""
|
| 5 |
|
| 6 |
-
title = """# ππ»ββοΈWelcome to Tonic's π€
|
| 7 |
|
| 8 |
-
description = """
|
| 9 |
"""
|
| 10 |
|
| 11 |
presentation1 = """Try this model on [build.nvidia.com](https://build.nvidia.com/nvidia/nemotron-mini-4b-instruct).
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
**Model Dates:** π€Nemotron-Mini-4B-Instruct was trained between February 2024 and Aug 2024.
|
| 16 |
|
| 17 |
### License
|
| 18 |
|
|
|
|
| 3 |
πTeamTonicπ is always making cool demos! Join our active builder's π οΈcommunity π» [](https://discord.gg/qdfnvSPcqP) On π€Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On πGithub: [Tonic-AI](https://github.com/tonic-ai) & contribute toπ [Build Tonic](https://git.tonic-ai.com/contribute)π€Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant π€
|
| 4 |
"""
|
| 5 |
|
| 6 |
+
title = """# ππ»ββοΈWelcome to Tonic's π€ Mistral-NeMo-Minitron Demo π"""
|
| 7 |
|
| 8 |
+
description = """nvidia/π€Mistral-NeMo-Minitron-8B-Instruct is a model for generating responses for various text-generation tasks including roleplaying, retrieval augmented generation, and function calling.
|
| 9 |
"""
|
| 10 |
|
| 11 |
presentation1 = """Try this model on [build.nvidia.com](https://build.nvidia.com/nvidia/nemotron-mini-4b-instruct).
|
| 12 |
|
| 13 |
+
Mistral-NeMo-Minitron-8B-Instruct is a model for generating responses for various text-generation tasks including roleplaying, retrieval augmented generation, and function calling. It is a fine-tuned version of [nvidia/Mistral-NeMo-Minitron-8B-Base](https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base), which was pruned and distilled from [Mistral-NeMo 12B](https://huggingface.co/nvidia/Mistral-NeMo-12B-Base) using [our LLM compression technique](https://arxiv.org/abs/2407.14679). The model was trained using a multi-stage SFT and preference-based alignment technique with [NeMo Aligner](https://github.com/NVIDIA/NeMo-Aligner). For details on the alignment technique, please refer to the [Nemotron-4 340B Technical Report](https://arxiv.org/abs/2406.11704).
|
|
|
|
|
|
|
| 14 |
|
| 15 |
### License
|
| 16 |
|
test.py
ADDED
|
@@ -0,0 +1,1662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import warnings
|
| 3 |
+
from typing import Optional, Tuple
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import Tensor
|
| 7 |
+
from .linear import NonDynamicallyQuantizableLinear
|
| 8 |
+
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
| 9 |
+
from torch.nn.parameter import Parameter
|
| 10 |
+
from .module import Module
|
| 11 |
+
from .. import functional as F
|
| 12 |
+
|
| 13 |
+
__all__ = ['Threshold', 'ReLU', 'RReLU', 'Hardtanh', 'ReLU6', 'Sigmoid', 'Hardsigmoid', 'Tanh',
|
| 14 |
+
'SiLU', 'Mish', 'Hardswish', 'ELU', 'CELU', 'SELU', 'GLU', 'GELU', 'Hardshrink', 'LeakyReLU',
|
| 15 |
+
'LogSigmoid', 'Softplus', 'Softshrink', 'MultiheadAttention', 'PReLU', 'Softsign', 'Tanhshrink',
|
| 16 |
+
'Softmin', 'Softmax', 'Softmax2d', 'LogSoftmax']
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
[docs]class Threshold(Module):
|
| 20 |
+
r"""Thresholds each element of the input Tensor.
|
| 21 |
+
|
| 22 |
+
Threshold is defined as:
|
| 23 |
+
|
| 24 |
+
.. math::
|
| 25 |
+
y =
|
| 26 |
+
\begin{cases}
|
| 27 |
+
x, &\text{ if } x > \text{threshold} \\
|
| 28 |
+
\text{value}, &\text{ otherwise }
|
| 29 |
+
\end{cases}
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
threshold: The value to threshold at
|
| 33 |
+
value: The value to replace with
|
| 34 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 35 |
+
|
| 36 |
+
Shape:
|
| 37 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 38 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 39 |
+
|
| 40 |
+
Examples::
|
| 41 |
+
|
| 42 |
+
>>> m = nn.Threshold(0.1, 20)
|
| 43 |
+
>>> input = torch.randn(2)
|
| 44 |
+
>>> output = m(input)
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
__constants__ = ['threshold', 'value', 'inplace']
|
| 48 |
+
|
| 49 |
+
threshold: float
|
| 50 |
+
value: float
|
| 51 |
+
inplace: bool
|
| 52 |
+
|
| 53 |
+
def __init__(self, threshold: float, value: float, inplace: bool = False) -> None:
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.threshold = threshold
|
| 56 |
+
self.value = value
|
| 57 |
+
self.inplace = inplace
|
| 58 |
+
# TODO: check in THNN (if inplace == True, then assert value <= threshold)
|
| 59 |
+
|
| 60 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 61 |
+
return F.threshold(input, self.threshold, self.value, self.inplace)
|
| 62 |
+
|
| 63 |
+
def extra_repr(self):
|
| 64 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
| 65 |
+
return f'threshold={self.threshold}, value={self.value}{inplace_str}'
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
[docs]class ReLU(Module):
|
| 70 |
+
r"""Applies the rectified linear unit function element-wise.
|
| 71 |
+
|
| 72 |
+
:math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 76 |
+
|
| 77 |
+
Shape:
|
| 78 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 79 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 80 |
+
|
| 81 |
+
.. image:: ../scripts/activation_images/ReLU.png
|
| 82 |
+
|
| 83 |
+
Examples::
|
| 84 |
+
|
| 85 |
+
>>> m = nn.ReLU()
|
| 86 |
+
>>> input = torch.randn(2)
|
| 87 |
+
>>> output = m(input)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
An implementation of CReLU - https://arxiv.org/abs/1603.05201
|
| 91 |
+
|
| 92 |
+
>>> m = nn.ReLU()
|
| 93 |
+
>>> input = torch.randn(2).unsqueeze(0)
|
| 94 |
+
>>> output = torch.cat((m(input), m(-input)))
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
__constants__ = ['inplace']
|
| 98 |
+
inplace: bool
|
| 99 |
+
|
| 100 |
+
def __init__(self, inplace: bool = False):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.inplace = inplace
|
| 103 |
+
|
| 104 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 105 |
+
return F.relu(input, inplace=self.inplace)
|
| 106 |
+
|
| 107 |
+
def extra_repr(self) -> str:
|
| 108 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
| 109 |
+
return inplace_str
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
[docs]class RReLU(Module):
|
| 114 |
+
r"""Applies the randomized leaky rectified linear unit function, element-wise.
|
| 115 |
+
|
| 116 |
+
Method described in the paper:
|
| 117 |
+
`Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_.
|
| 118 |
+
|
| 119 |
+
The function is defined as:
|
| 120 |
+
|
| 121 |
+
.. math::
|
| 122 |
+
\text{RReLU}(x) =
|
| 123 |
+
\begin{cases}
|
| 124 |
+
x & \text{if } x \geq 0 \\
|
| 125 |
+
ax & \text{ otherwise }
|
| 126 |
+
\end{cases}
|
| 127 |
+
|
| 128 |
+
where :math:`a` is randomly sampled from uniform distribution
|
| 129 |
+
:math:`\mathcal{U}(\text{lower}, \text{upper})` during training while during
|
| 130 |
+
evaluation :math:`a` is fixed with :math:`a = \frac{\text{lower} + \text{upper}}{2}`.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
|
| 134 |
+
upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
|
| 135 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 136 |
+
|
| 137 |
+
Shape:
|
| 138 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 139 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 140 |
+
|
| 141 |
+
.. image:: ../scripts/activation_images/RReLU.png
|
| 142 |
+
|
| 143 |
+
Examples::
|
| 144 |
+
|
| 145 |
+
>>> m = nn.RReLU(0.1, 0.3)
|
| 146 |
+
>>> input = torch.randn(2)
|
| 147 |
+
>>> output = m(input)
|
| 148 |
+
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
__constants__ = ['lower', 'upper', 'inplace']
|
| 152 |
+
|
| 153 |
+
lower: float
|
| 154 |
+
upper: float
|
| 155 |
+
inplace: bool
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
lower: float = 1. / 8,
|
| 160 |
+
upper: float = 1. / 3,
|
| 161 |
+
inplace: bool = False
|
| 162 |
+
):
|
| 163 |
+
super().__init__()
|
| 164 |
+
self.lower = lower
|
| 165 |
+
self.upper = upper
|
| 166 |
+
self.inplace = inplace
|
| 167 |
+
|
| 168 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 169 |
+
return F.rrelu(input, self.lower, self.upper, self.training, self.inplace)
|
| 170 |
+
|
| 171 |
+
def extra_repr(self):
|
| 172 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
| 173 |
+
return f'lower={self.lower}, upper={self.upper}{inplace_str}'
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
[docs]class Hardtanh(Module):
|
| 178 |
+
r"""Applies the HardTanh function element-wise.
|
| 179 |
+
|
| 180 |
+
HardTanh is defined as:
|
| 181 |
+
|
| 182 |
+
.. math::
|
| 183 |
+
\text{HardTanh}(x) = \begin{cases}
|
| 184 |
+
\text{max\_val} & \text{ if } x > \text{ max\_val } \\
|
| 185 |
+
\text{min\_val} & \text{ if } x < \text{ min\_val } \\
|
| 186 |
+
x & \text{ otherwise } \\
|
| 187 |
+
\end{cases}
|
| 188 |
+
|
| 189 |
+
Args:
|
| 190 |
+
min_val: minimum value of the linear region range. Default: -1
|
| 191 |
+
max_val: maximum value of the linear region range. Default: 1
|
| 192 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 193 |
+
|
| 194 |
+
Keyword arguments :attr:`min_value` and :attr:`max_value`
|
| 195 |
+
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.
|
| 196 |
+
|
| 197 |
+
Shape:
|
| 198 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 199 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 200 |
+
|
| 201 |
+
.. image:: ../scripts/activation_images/Hardtanh.png
|
| 202 |
+
|
| 203 |
+
Examples::
|
| 204 |
+
|
| 205 |
+
>>> m = nn.Hardtanh(-2, 2)
|
| 206 |
+
>>> input = torch.randn(2)
|
| 207 |
+
>>> output = m(input)
|
| 208 |
+
"""
|
| 209 |
+
|
| 210 |
+
__constants__ = ['min_val', 'max_val', 'inplace']
|
| 211 |
+
|
| 212 |
+
min_val: float
|
| 213 |
+
max_val: float
|
| 214 |
+
inplace: bool
|
| 215 |
+
|
| 216 |
+
def __init__(
|
| 217 |
+
self,
|
| 218 |
+
min_val: float = -1.,
|
| 219 |
+
max_val: float = 1.,
|
| 220 |
+
inplace: bool = False,
|
| 221 |
+
min_value: Optional[float] = None,
|
| 222 |
+
max_value: Optional[float] = None
|
| 223 |
+
) -> None:
|
| 224 |
+
super().__init__()
|
| 225 |
+
if min_value is not None:
|
| 226 |
+
warnings.warn(
|
| 227 |
+
"keyword argument `min_value` is deprecated and rename to `min_val`",
|
| 228 |
+
FutureWarning,
|
| 229 |
+
stacklevel=2,
|
| 230 |
+
)
|
| 231 |
+
min_val = min_value
|
| 232 |
+
if max_value is not None:
|
| 233 |
+
warnings.warn(
|
| 234 |
+
"keyword argument `max_value` is deprecated and rename to `max_val`",
|
| 235 |
+
FutureWarning,
|
| 236 |
+
stacklevel=2,
|
| 237 |
+
)
|
| 238 |
+
max_val = max_value
|
| 239 |
+
|
| 240 |
+
self.min_val = min_val
|
| 241 |
+
self.max_val = max_val
|
| 242 |
+
self.inplace = inplace
|
| 243 |
+
assert self.max_val > self.min_val
|
| 244 |
+
|
| 245 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 246 |
+
return F.hardtanh(input, self.min_val, self.max_val, self.inplace)
|
| 247 |
+
|
| 248 |
+
def extra_repr(self) -> str:
|
| 249 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
| 250 |
+
return f'min_val={self.min_val}, max_val={self.max_val}{inplace_str}'
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
[docs]class ReLU6(Hardtanh):
|
| 255 |
+
r"""Applies the ReLU6 function element-wise.
|
| 256 |
+
|
| 257 |
+
.. math::
|
| 258 |
+
\text{ReLU6}(x) = \min(\max(0,x), 6)
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 262 |
+
|
| 263 |
+
Shape:
|
| 264 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 265 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 266 |
+
|
| 267 |
+
.. image:: ../scripts/activation_images/ReLU6.png
|
| 268 |
+
|
| 269 |
+
Examples::
|
| 270 |
+
|
| 271 |
+
>>> m = nn.ReLU6()
|
| 272 |
+
>>> input = torch.randn(2)
|
| 273 |
+
>>> output = m(input)
|
| 274 |
+
"""
|
| 275 |
+
|
| 276 |
+
def __init__(self, inplace: bool = False):
|
| 277 |
+
super().__init__(0., 6., inplace)
|
| 278 |
+
|
| 279 |
+
def extra_repr(self) -> str:
|
| 280 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
| 281 |
+
return inplace_str
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
[docs]class Sigmoid(Module):
|
| 286 |
+
r"""Applies the Sigmoid function element-wise.
|
| 287 |
+
|
| 288 |
+
.. math::
|
| 289 |
+
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
Shape:
|
| 293 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 294 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 295 |
+
|
| 296 |
+
.. image:: ../scripts/activation_images/Sigmoid.png
|
| 297 |
+
|
| 298 |
+
Examples::
|
| 299 |
+
|
| 300 |
+
>>> m = nn.Sigmoid()
|
| 301 |
+
>>> input = torch.randn(2)
|
| 302 |
+
>>> output = m(input)
|
| 303 |
+
"""
|
| 304 |
+
|
| 305 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 306 |
+
return torch.sigmoid(input)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
[docs]class Hardsigmoid(Module):
|
| 311 |
+
r"""Applies the Hardsigmoid function element-wise.
|
| 312 |
+
|
| 313 |
+
Hardsigmoid is defined as:
|
| 314 |
+
|
| 315 |
+
.. math::
|
| 316 |
+
\text{Hardsigmoid}(x) = \begin{cases}
|
| 317 |
+
0 & \text{if~} x \le -3, \\
|
| 318 |
+
1 & \text{if~} x \ge +3, \\
|
| 319 |
+
x / 6 + 1 / 2 & \text{otherwise}
|
| 320 |
+
\end{cases}
|
| 321 |
+
|
| 322 |
+
Args:
|
| 323 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 324 |
+
|
| 325 |
+
Shape:
|
| 326 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 327 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 328 |
+
|
| 329 |
+
.. image:: ../scripts/activation_images/Hardsigmoid.png
|
| 330 |
+
|
| 331 |
+
Examples::
|
| 332 |
+
|
| 333 |
+
>>> m = nn.Hardsigmoid()
|
| 334 |
+
>>> input = torch.randn(2)
|
| 335 |
+
>>> output = m(input)
|
| 336 |
+
"""
|
| 337 |
+
|
| 338 |
+
__constants__ = ['inplace']
|
| 339 |
+
|
| 340 |
+
inplace: bool
|
| 341 |
+
|
| 342 |
+
def __init__(self, inplace : bool = False) -> None:
|
| 343 |
+
super().__init__()
|
| 344 |
+
self.inplace = inplace
|
| 345 |
+
|
| 346 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 347 |
+
return F.hardsigmoid(input, self.inplace)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
[docs]class Tanh(Module):
|
| 352 |
+
r"""Applies the Hyperbolic Tangent (Tanh) function element-wise.
|
| 353 |
+
|
| 354 |
+
Tanh is defined as:
|
| 355 |
+
|
| 356 |
+
.. math::
|
| 357 |
+
\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}
|
| 358 |
+
|
| 359 |
+
Shape:
|
| 360 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 361 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 362 |
+
|
| 363 |
+
.. image:: ../scripts/activation_images/Tanh.png
|
| 364 |
+
|
| 365 |
+
Examples::
|
| 366 |
+
|
| 367 |
+
>>> m = nn.Tanh()
|
| 368 |
+
>>> input = torch.randn(2)
|
| 369 |
+
>>> output = m(input)
|
| 370 |
+
"""
|
| 371 |
+
|
| 372 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 373 |
+
return torch.tanh(input)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
[docs]class SiLU(Module):
|
| 377 |
+
r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
|
| 378 |
+
|
| 379 |
+
The SiLU function is also known as the swish function.
|
| 380 |
+
|
| 381 |
+
.. math::
|
| 382 |
+
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
|
| 383 |
+
|
| 384 |
+
.. note::
|
| 385 |
+
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
|
| 386 |
+
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
|
| 387 |
+
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
|
| 388 |
+
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
|
| 389 |
+
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
|
| 390 |
+
where the SiLU was experimented with later.
|
| 391 |
+
|
| 392 |
+
Shape:
|
| 393 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 394 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 395 |
+
|
| 396 |
+
.. image:: ../scripts/activation_images/SiLU.png
|
| 397 |
+
|
| 398 |
+
Examples::
|
| 399 |
+
|
| 400 |
+
>>> m = nn.SiLU()
|
| 401 |
+
>>> input = torch.randn(2)
|
| 402 |
+
>>> output = m(input)
|
| 403 |
+
"""
|
| 404 |
+
|
| 405 |
+
__constants__ = ['inplace']
|
| 406 |
+
inplace: bool
|
| 407 |
+
|
| 408 |
+
def __init__(self, inplace: bool = False):
|
| 409 |
+
super().__init__()
|
| 410 |
+
self.inplace = inplace
|
| 411 |
+
|
| 412 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 413 |
+
return F.silu(input, inplace=self.inplace)
|
| 414 |
+
|
| 415 |
+
def extra_repr(self) -> str:
|
| 416 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
| 417 |
+
return inplace_str
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
[docs]class Mish(Module):
|
| 421 |
+
r"""Applies the Mish function, element-wise.
|
| 422 |
+
|
| 423 |
+
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
|
| 424 |
+
|
| 425 |
+
.. math::
|
| 426 |
+
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))
|
| 427 |
+
|
| 428 |
+
.. note::
|
| 429 |
+
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_
|
| 430 |
+
|
| 431 |
+
Shape:
|
| 432 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 433 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 434 |
+
|
| 435 |
+
.. image:: ../scripts/activation_images/Mish.png
|
| 436 |
+
|
| 437 |
+
Examples::
|
| 438 |
+
|
| 439 |
+
>>> m = nn.Mish()
|
| 440 |
+
>>> input = torch.randn(2)
|
| 441 |
+
>>> output = m(input)
|
| 442 |
+
"""
|
| 443 |
+
|
| 444 |
+
__constants__ = ['inplace']
|
| 445 |
+
inplace: bool
|
| 446 |
+
|
| 447 |
+
def __init__(self, inplace: bool = False):
|
| 448 |
+
super().__init__()
|
| 449 |
+
self.inplace = inplace
|
| 450 |
+
|
| 451 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 452 |
+
return F.mish(input, inplace=self.inplace)
|
| 453 |
+
|
| 454 |
+
def extra_repr(self) -> str:
|
| 455 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
| 456 |
+
return inplace_str
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
[docs]class Hardswish(Module):
|
| 460 |
+
r"""Applies the Hardswish function, element-wise.
|
| 461 |
+
|
| 462 |
+
Method described in the paper: `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.
|
| 463 |
+
|
| 464 |
+
Hardswish is defined as:
|
| 465 |
+
|
| 466 |
+
.. math::
|
| 467 |
+
\text{Hardswish}(x) = \begin{cases}
|
| 468 |
+
0 & \text{if~} x \le -3, \\
|
| 469 |
+
x & \text{if~} x \ge +3, \\
|
| 470 |
+
x \cdot (x + 3) /6 & \text{otherwise}
|
| 471 |
+
\end{cases}
|
| 472 |
+
|
| 473 |
+
Args:
|
| 474 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 475 |
+
|
| 476 |
+
Shape:
|
| 477 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 478 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 479 |
+
|
| 480 |
+
.. image:: ../scripts/activation_images/Hardswish.png
|
| 481 |
+
|
| 482 |
+
Examples::
|
| 483 |
+
|
| 484 |
+
>>> m = nn.Hardswish()
|
| 485 |
+
>>> input = torch.randn(2)
|
| 486 |
+
>>> output = m(input)
|
| 487 |
+
"""
|
| 488 |
+
|
| 489 |
+
__constants__ = ['inplace']
|
| 490 |
+
|
| 491 |
+
inplace: bool
|
| 492 |
+
|
| 493 |
+
def __init__(self, inplace : bool = False) -> None:
|
| 494 |
+
super().__init__()
|
| 495 |
+
self.inplace = inplace
|
| 496 |
+
|
| 497 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 498 |
+
return F.hardswish(input, self.inplace)
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
[docs]class ELU(Module):
|
| 503 |
+
r"""Applies the Exponential Linear Unit (ELU) function, element-wise.
|
| 504 |
+
|
| 505 |
+
Method described in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear
|
| 506 |
+
Units (ELUs) <https://arxiv.org/abs/1511.07289>`__.
|
| 507 |
+
|
| 508 |
+
ELU is defined as:
|
| 509 |
+
|
| 510 |
+
.. math::
|
| 511 |
+
\text{ELU}(x) = \begin{cases}
|
| 512 |
+
x, & \text{ if } x > 0\\
|
| 513 |
+
\alpha * (\exp(x) - 1), & \text{ if } x \leq 0
|
| 514 |
+
\end{cases}
|
| 515 |
+
|
| 516 |
+
Args:
|
| 517 |
+
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
|
| 518 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 519 |
+
|
| 520 |
+
Shape:
|
| 521 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 522 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 523 |
+
|
| 524 |
+
.. image:: ../scripts/activation_images/ELU.png
|
| 525 |
+
|
| 526 |
+
Examples::
|
| 527 |
+
|
| 528 |
+
>>> m = nn.ELU()
|
| 529 |
+
>>> input = torch.randn(2)
|
| 530 |
+
>>> output = m(input)
|
| 531 |
+
"""
|
| 532 |
+
|
| 533 |
+
__constants__ = ['alpha', 'inplace']
|
| 534 |
+
alpha: float
|
| 535 |
+
inplace: bool
|
| 536 |
+
|
| 537 |
+
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
| 538 |
+
super().__init__()
|
| 539 |
+
self.alpha = alpha
|
| 540 |
+
self.inplace = inplace
|
| 541 |
+
|
| 542 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 543 |
+
return F.elu(input, self.alpha, self.inplace)
|
| 544 |
+
|
| 545 |
+
def extra_repr(self) -> str:
|
| 546 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
| 547 |
+
return f'alpha={self.alpha}{inplace_str}'
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
[docs]class CELU(Module):
|
| 552 |
+
r"""Applies the CELU function element-wise.
|
| 553 |
+
|
| 554 |
+
.. math::
|
| 555 |
+
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
| 556 |
+
|
| 557 |
+
More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .
|
| 558 |
+
|
| 559 |
+
Args:
|
| 560 |
+
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
|
| 561 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 562 |
+
|
| 563 |
+
Shape:
|
| 564 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 565 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 566 |
+
|
| 567 |
+
.. image:: ../scripts/activation_images/CELU.png
|
| 568 |
+
|
| 569 |
+
Examples::
|
| 570 |
+
|
| 571 |
+
>>> m = nn.CELU()
|
| 572 |
+
>>> input = torch.randn(2)
|
| 573 |
+
>>> output = m(input)
|
| 574 |
+
|
| 575 |
+
.. _`Continuously Differentiable Exponential Linear Units`:
|
| 576 |
+
https://arxiv.org/abs/1704.07483
|
| 577 |
+
"""
|
| 578 |
+
|
| 579 |
+
__constants__ = ['alpha', 'inplace']
|
| 580 |
+
alpha: float
|
| 581 |
+
inplace: bool
|
| 582 |
+
|
| 583 |
+
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
| 584 |
+
super().__init__()
|
| 585 |
+
self.alpha = alpha
|
| 586 |
+
self.inplace = inplace
|
| 587 |
+
|
| 588 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 589 |
+
return F.celu(input, self.alpha, self.inplace)
|
| 590 |
+
|
| 591 |
+
def extra_repr(self) -> str:
|
| 592 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
| 593 |
+
return f'alpha={self.alpha}{inplace_str}'
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
[docs]class SELU(Module):
|
| 598 |
+
r"""Applies the SELU function element-wise.
|
| 599 |
+
|
| 600 |
+
.. math::
|
| 601 |
+
\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))
|
| 602 |
+
|
| 603 |
+
with :math:`\alpha = 1.6732632423543772848170429916717` and
|
| 604 |
+
:math:`\text{scale} = 1.0507009873554804934193349852946`.
|
| 605 |
+
|
| 606 |
+
.. warning::
|
| 607 |
+
When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation,
|
| 608 |
+
``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'``
|
| 609 |
+
in order to get `Self-Normalizing Neural Networks`_.
|
| 610 |
+
See :func:`torch.nn.init.calculate_gain` for more information.
|
| 611 |
+
|
| 612 |
+
More details can be found in the paper `Self-Normalizing Neural Networks`_ .
|
| 613 |
+
|
| 614 |
+
Args:
|
| 615 |
+
inplace (bool, optional): can optionally do the operation in-place. Default: ``False``
|
| 616 |
+
|
| 617 |
+
Shape:
|
| 618 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 619 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 620 |
+
|
| 621 |
+
.. image:: ../scripts/activation_images/SELU.png
|
| 622 |
+
|
| 623 |
+
Examples::
|
| 624 |
+
|
| 625 |
+
>>> m = nn.SELU()
|
| 626 |
+
>>> input = torch.randn(2)
|
| 627 |
+
>>> output = m(input)
|
| 628 |
+
|
| 629 |
+
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
|
| 630 |
+
"""
|
| 631 |
+
|
| 632 |
+
__constants__ = ['inplace']
|
| 633 |
+
inplace: bool
|
| 634 |
+
|
| 635 |
+
def __init__(self, inplace: bool = False) -> None:
|
| 636 |
+
super().__init__()
|
| 637 |
+
self.inplace = inplace
|
| 638 |
+
|
| 639 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 640 |
+
return F.selu(input, self.inplace)
|
| 641 |
+
|
| 642 |
+
def extra_repr(self) -> str:
|
| 643 |
+
inplace_str = 'inplace=True' if self.inplace else ''
|
| 644 |
+
return inplace_str
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
[docs]class GLU(Module):
|
| 649 |
+
r"""Applies the gated linear unit function.
|
| 650 |
+
|
| 651 |
+
:math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
|
| 652 |
+
of the input matrices and :math:`b` is the second half.
|
| 653 |
+
|
| 654 |
+
Args:
|
| 655 |
+
dim (int): the dimension on which to split the input. Default: -1
|
| 656 |
+
|
| 657 |
+
Shape:
|
| 658 |
+
- Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
|
| 659 |
+
dimensions
|
| 660 |
+
- Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`
|
| 661 |
+
|
| 662 |
+
Examples::
|
| 663 |
+
|
| 664 |
+
>>> m = nn.GLU()
|
| 665 |
+
>>> input = torch.randn(4, 2)
|
| 666 |
+
>>> output = m(input)
|
| 667 |
+
"""
|
| 668 |
+
|
| 669 |
+
__constants__ = ['dim']
|
| 670 |
+
dim: int
|
| 671 |
+
|
| 672 |
+
def __init__(self, dim: int = -1) -> None:
|
| 673 |
+
super().__init__()
|
| 674 |
+
self.dim = dim
|
| 675 |
+
|
| 676 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 677 |
+
return F.glu(input, self.dim)
|
| 678 |
+
|
| 679 |
+
def extra_repr(self) -> str:
|
| 680 |
+
return f'dim={self.dim}'
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
[docs]class GELU(Module):
|
| 685 |
+
r"""Applies the Gaussian Error Linear Units function.
|
| 686 |
+
|
| 687 |
+
.. math:: \text{GELU}(x) = x * \Phi(x)
|
| 688 |
+
|
| 689 |
+
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
|
| 690 |
+
|
| 691 |
+
When the approximate argument is 'tanh', Gelu is estimated with:
|
| 692 |
+
|
| 693 |
+
.. math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
|
| 694 |
+
|
| 695 |
+
Args:
|
| 696 |
+
approximate (str, optional): the gelu approximation algorithm to use:
|
| 697 |
+
``'none'`` | ``'tanh'``. Default: ``'none'``
|
| 698 |
+
|
| 699 |
+
Shape:
|
| 700 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 701 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 702 |
+
|
| 703 |
+
.. image:: ../scripts/activation_images/GELU.png
|
| 704 |
+
|
| 705 |
+
Examples::
|
| 706 |
+
|
| 707 |
+
>>> m = nn.GELU()
|
| 708 |
+
>>> input = torch.randn(2)
|
| 709 |
+
>>> output = m(input)
|
| 710 |
+
"""
|
| 711 |
+
|
| 712 |
+
__constants__ = ['approximate']
|
| 713 |
+
approximate: str
|
| 714 |
+
|
| 715 |
+
def __init__(self, approximate: str = 'none') -> None:
|
| 716 |
+
super().__init__()
|
| 717 |
+
self.approximate = approximate
|
| 718 |
+
|
| 719 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 720 |
+
return F.gelu(input, approximate=self.approximate)
|
| 721 |
+
|
| 722 |
+
def extra_repr(self) -> str:
|
| 723 |
+
return f'approximate={repr(self.approximate)}'
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
[docs]class Hardshrink(Module):
|
| 728 |
+
r"""Applies the Hard Shrinkage (Hardshrink) function element-wise.
|
| 729 |
+
|
| 730 |
+
Hardshrink is defined as:
|
| 731 |
+
|
| 732 |
+
.. math::
|
| 733 |
+
\text{HardShrink}(x) =
|
| 734 |
+
\begin{cases}
|
| 735 |
+
x, & \text{ if } x > \lambda \\
|
| 736 |
+
x, & \text{ if } x < -\lambda \\
|
| 737 |
+
0, & \text{ otherwise }
|
| 738 |
+
\end{cases}
|
| 739 |
+
|
| 740 |
+
Args:
|
| 741 |
+
lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5
|
| 742 |
+
|
| 743 |
+
Shape:
|
| 744 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 745 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 746 |
+
|
| 747 |
+
.. image:: ../scripts/activation_images/Hardshrink.png
|
| 748 |
+
|
| 749 |
+
Examples::
|
| 750 |
+
|
| 751 |
+
>>> m = nn.Hardshrink()
|
| 752 |
+
>>> input = torch.randn(2)
|
| 753 |
+
>>> output = m(input)
|
| 754 |
+
"""
|
| 755 |
+
|
| 756 |
+
__constants__ = ['lambd']
|
| 757 |
+
lambd: float
|
| 758 |
+
|
| 759 |
+
def __init__(self, lambd: float = 0.5) -> None:
|
| 760 |
+
super().__init__()
|
| 761 |
+
self.lambd = lambd
|
| 762 |
+
|
| 763 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 764 |
+
return F.hardshrink(input, self.lambd)
|
| 765 |
+
|
| 766 |
+
def extra_repr(self) -> str:
|
| 767 |
+
return f'{self.lambd}'
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
[docs]class LeakyReLU(Module):
|
| 772 |
+
r"""Applies the LeakyReLU function element-wise.
|
| 773 |
+
|
| 774 |
+
.. math::
|
| 775 |
+
\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
or
|
| 779 |
+
|
| 780 |
+
.. math::
|
| 781 |
+
\text{LeakyReLU}(x) =
|
| 782 |
+
\begin{cases}
|
| 783 |
+
x, & \text{ if } x \geq 0 \\
|
| 784 |
+
\text{negative\_slope} \times x, & \text{ otherwise }
|
| 785 |
+
\end{cases}
|
| 786 |
+
|
| 787 |
+
Args:
|
| 788 |
+
negative_slope: Controls the angle of the negative slope (which is used for
|
| 789 |
+
negative input values). Default: 1e-2
|
| 790 |
+
inplace: can optionally do the operation in-place. Default: ``False``
|
| 791 |
+
|
| 792 |
+
Shape:
|
| 793 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
| 794 |
+
dimensions
|
| 795 |
+
- Output: :math:`(*)`, same shape as the input
|
| 796 |
+
|
| 797 |
+
.. image:: ../scripts/activation_images/LeakyReLU.png
|
| 798 |
+
|
| 799 |
+
Examples::
|
| 800 |
+
|
| 801 |
+
>>> m = nn.LeakyReLU(0.1)
|
| 802 |
+
>>> input = torch.randn(2)
|
| 803 |
+
>>> output = m(input)
|
| 804 |
+
"""
|
| 805 |
+
|
| 806 |
+
__constants__ = ['inplace', 'negative_slope']
|
| 807 |
+
inplace: bool
|
| 808 |
+
negative_slope: float
|
| 809 |
+
|
| 810 |
+
def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None:
|
| 811 |
+
super().__init__()
|
| 812 |
+
self.negative_slope = negative_slope
|
| 813 |
+
self.inplace = inplace
|
| 814 |
+
|
| 815 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 816 |
+
return F.leaky_relu(input, self.negative_slope, self.inplace)
|
| 817 |
+
|
| 818 |
+
def extra_repr(self) -> str:
|
| 819 |
+
inplace_str = ', inplace=True' if self.inplace else ''
|
| 820 |
+
return f'negative_slope={self.negative_slope}{inplace_str}'
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
[docs]class LogSigmoid(Module):
|
| 825 |
+
r"""Applies the Logsigmoid function element-wise.
|
| 826 |
+
|
| 827 |
+
.. math::
|
| 828 |
+
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)
|
| 829 |
+
|
| 830 |
+
Shape:
|
| 831 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 832 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 833 |
+
|
| 834 |
+
.. image:: ../scripts/activation_images/LogSigmoid.png
|
| 835 |
+
|
| 836 |
+
Examples::
|
| 837 |
+
|
| 838 |
+
>>> m = nn.LogSigmoid()
|
| 839 |
+
>>> input = torch.randn(2)
|
| 840 |
+
>>> output = m(input)
|
| 841 |
+
"""
|
| 842 |
+
|
| 843 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 844 |
+
return F.logsigmoid(input)
|
| 845 |
+
|
| 846 |
+
|
| 847 |
+
|
| 848 |
+
[docs]class Softplus(Module):
|
| 849 |
+
r"""Applies the Softplus function element-wise.
|
| 850 |
+
|
| 851 |
+
.. math::
|
| 852 |
+
\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
|
| 853 |
+
|
| 854 |
+
SoftPlus is a smooth approximation to the ReLU function and can be used
|
| 855 |
+
to constrain the output of a machine to always be positive.
|
| 856 |
+
|
| 857 |
+
For numerical stability the implementation reverts to the linear function
|
| 858 |
+
when :math:`input \times \beta > threshold`.
|
| 859 |
+
|
| 860 |
+
Args:
|
| 861 |
+
beta: the :math:`\beta` value for the Softplus formulation. Default: 1
|
| 862 |
+
threshold: values above this revert to a linear function. Default: 20
|
| 863 |
+
|
| 864 |
+
Shape:
|
| 865 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 866 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 867 |
+
|
| 868 |
+
.. image:: ../scripts/activation_images/Softplus.png
|
| 869 |
+
|
| 870 |
+
Examples::
|
| 871 |
+
|
| 872 |
+
>>> m = nn.Softplus()
|
| 873 |
+
>>> input = torch.randn(2)
|
| 874 |
+
>>> output = m(input)
|
| 875 |
+
"""
|
| 876 |
+
|
| 877 |
+
__constants__ = ['beta', 'threshold']
|
| 878 |
+
beta: float
|
| 879 |
+
threshold: float
|
| 880 |
+
|
| 881 |
+
def __init__(self, beta: float = 1.0, threshold: float = 20.0) -> None:
|
| 882 |
+
super().__init__()
|
| 883 |
+
self.beta = beta
|
| 884 |
+
self.threshold = threshold
|
| 885 |
+
|
| 886 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 887 |
+
return F.softplus(input, self.beta, self.threshold)
|
| 888 |
+
|
| 889 |
+
def extra_repr(self) -> str:
|
| 890 |
+
return f'beta={self.beta}, threshold={self.threshold}'
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
[docs]class Softshrink(Module):
|
| 895 |
+
r"""Applies the soft shrinkage function element-wise.
|
| 896 |
+
|
| 897 |
+
.. math::
|
| 898 |
+
\text{SoftShrinkage}(x) =
|
| 899 |
+
\begin{cases}
|
| 900 |
+
x - \lambda, & \text{ if } x > \lambda \\
|
| 901 |
+
x + \lambda, & \text{ if } x < -\lambda \\
|
| 902 |
+
0, & \text{ otherwise }
|
| 903 |
+
\end{cases}
|
| 904 |
+
|
| 905 |
+
Args:
|
| 906 |
+
lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5
|
| 907 |
+
|
| 908 |
+
Shape:
|
| 909 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 910 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 911 |
+
|
| 912 |
+
.. image:: ../scripts/activation_images/Softshrink.png
|
| 913 |
+
|
| 914 |
+
Examples::
|
| 915 |
+
|
| 916 |
+
>>> m = nn.Softshrink()
|
| 917 |
+
>>> input = torch.randn(2)
|
| 918 |
+
>>> output = m(input)
|
| 919 |
+
"""
|
| 920 |
+
|
| 921 |
+
__constants__ = ['lambd']
|
| 922 |
+
lambd: float
|
| 923 |
+
|
| 924 |
+
def __init__(self, lambd: float = 0.5) -> None:
|
| 925 |
+
super().__init__()
|
| 926 |
+
self.lambd = lambd
|
| 927 |
+
|
| 928 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 929 |
+
return F.softshrink(input, self.lambd)
|
| 930 |
+
|
| 931 |
+
def extra_repr(self) -> str:
|
| 932 |
+
return str(self.lambd)
|
| 933 |
+
|
| 934 |
+
|
| 935 |
+
|
| 936 |
+
def _check_arg_device(x: Optional[torch.Tensor]) -> bool:
|
| 937 |
+
if x is not None:
|
| 938 |
+
return x.device.type in ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
|
| 939 |
+
return True
|
| 940 |
+
|
| 941 |
+
|
| 942 |
+
def _arg_requires_grad(x: Optional[torch.Tensor]) -> bool:
|
| 943 |
+
if x is not None:
|
| 944 |
+
return x.requires_grad
|
| 945 |
+
return False
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
def _is_make_fx_tracing():
|
| 949 |
+
if not torch.jit.is_scripting():
|
| 950 |
+
torch_dispatch_mode_stack = torch.utils._python_dispatch._get_current_dispatch_mode_stack()
|
| 951 |
+
return any(type(x) == torch.fx.experimental.proxy_tensor.ProxyTorchDispatchMode for x in torch_dispatch_mode_stack)
|
| 952 |
+
else:
|
| 953 |
+
return False
|
| 954 |
+
|
| 955 |
+
|
| 956 |
+
[docs]class MultiheadAttention(Module):
|
| 957 |
+
r"""Allows the model to jointly attend to information from different representation subspaces.
|
| 958 |
+
|
| 959 |
+
Method described in the paper:
|
| 960 |
+
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
| 961 |
+
|
| 962 |
+
Multi-Head Attention is defined as:
|
| 963 |
+
|
| 964 |
+
.. math::
|
| 965 |
+
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
| 966 |
+
|
| 967 |
+
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
| 968 |
+
|
| 969 |
+
``nn.MultiHeadAttention`` will use the optimized implementations of
|
| 970 |
+
``scaled_dot_product_attention()`` when possible.
|
| 971 |
+
|
| 972 |
+
In addition to support for the new ``scaled_dot_product_attention()``
|
| 973 |
+
function, for speeding up Inference, MHA will use
|
| 974 |
+
fastpath inference with support for Nested Tensors, iff:
|
| 975 |
+
|
| 976 |
+
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor).
|
| 977 |
+
- inputs are batched (3D) with ``batch_first==True``
|
| 978 |
+
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
| 979 |
+
- training is disabled (using ``.eval()``)
|
| 980 |
+
- ``add_bias_kv`` is ``False``
|
| 981 |
+
- ``add_zero_attn`` is ``False``
|
| 982 |
+
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
| 983 |
+
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
| 984 |
+
nor ``attn_mask`` is passed
|
| 985 |
+
- autocast is disabled
|
| 986 |
+
|
| 987 |
+
If the optimized inference fastpath implementation is in use, a
|
| 988 |
+
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
| 989 |
+
``query``/``key``/``value`` to represent padding more efficiently than using a
|
| 990 |
+
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
| 991 |
+
will be returned, and an additional speedup proportional to the fraction of the input
|
| 992 |
+
that is padding can be expected.
|
| 993 |
+
|
| 994 |
+
Args:
|
| 995 |
+
embed_dim: Total dimension of the model.
|
| 996 |
+
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
| 997 |
+
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
| 998 |
+
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
| 999 |
+
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
| 1000 |
+
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
| 1001 |
+
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
| 1002 |
+
Default: ``False``.
|
| 1003 |
+
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
| 1004 |
+
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
| 1005 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
| 1006 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
| 1007 |
+
|
| 1008 |
+
Examples::
|
| 1009 |
+
|
| 1010 |
+
>>> # xdoctest: +SKIP
|
| 1011 |
+
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
| 1012 |
+
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
| 1013 |
+
|
| 1014 |
+
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
|
| 1015 |
+
https://arxiv.org/abs/2205.14135
|
| 1016 |
+
|
| 1017 |
+
"""
|
| 1018 |
+
|
| 1019 |
+
__constants__ = ['batch_first']
|
| 1020 |
+
bias_k: Optional[torch.Tensor]
|
| 1021 |
+
bias_v: Optional[torch.Tensor]
|
| 1022 |
+
|
| 1023 |
+
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
|
| 1024 |
+
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
|
| 1025 |
+
if embed_dim <= 0 or num_heads <= 0:
|
| 1026 |
+
raise ValueError(
|
| 1027 |
+
f"embed_dim and num_heads must be greater than 0,"
|
| 1028 |
+
f" got embed_dim={embed_dim} and num_heads={num_heads} instead"
|
| 1029 |
+
)
|
| 1030 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
| 1031 |
+
super().__init__()
|
| 1032 |
+
self.embed_dim = embed_dim
|
| 1033 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
| 1034 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
| 1035 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 1036 |
+
|
| 1037 |
+
self.num_heads = num_heads
|
| 1038 |
+
self.dropout = dropout
|
| 1039 |
+
self.batch_first = batch_first
|
| 1040 |
+
self.head_dim = embed_dim // num_heads
|
| 1041 |
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
| 1042 |
+
|
| 1043 |
+
if not self._qkv_same_embed_dim:
|
| 1044 |
+
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
|
| 1045 |
+
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
|
| 1046 |
+
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
|
| 1047 |
+
self.register_parameter('in_proj_weight', None)
|
| 1048 |
+
else:
|
| 1049 |
+
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
|
| 1050 |
+
self.register_parameter('q_proj_weight', None)
|
| 1051 |
+
self.register_parameter('k_proj_weight', None)
|
| 1052 |
+
self.register_parameter('v_proj_weight', None)
|
| 1053 |
+
|
| 1054 |
+
if bias:
|
| 1055 |
+
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
|
| 1056 |
+
else:
|
| 1057 |
+
self.register_parameter('in_proj_bias', None)
|
| 1058 |
+
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
| 1059 |
+
|
| 1060 |
+
if add_bias_kv:
|
| 1061 |
+
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
| 1062 |
+
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
| 1063 |
+
else:
|
| 1064 |
+
self.bias_k = self.bias_v = None
|
| 1065 |
+
|
| 1066 |
+
self.add_zero_attn = add_zero_attn
|
| 1067 |
+
|
| 1068 |
+
self._reset_parameters()
|
| 1069 |
+
|
| 1070 |
+
def _reset_parameters(self):
|
| 1071 |
+
if self._qkv_same_embed_dim:
|
| 1072 |
+
xavier_uniform_(self.in_proj_weight)
|
| 1073 |
+
else:
|
| 1074 |
+
xavier_uniform_(self.q_proj_weight)
|
| 1075 |
+
xavier_uniform_(self.k_proj_weight)
|
| 1076 |
+
xavier_uniform_(self.v_proj_weight)
|
| 1077 |
+
|
| 1078 |
+
if self.in_proj_bias is not None:
|
| 1079 |
+
constant_(self.in_proj_bias, 0.)
|
| 1080 |
+
constant_(self.out_proj.bias, 0.)
|
| 1081 |
+
if self.bias_k is not None:
|
| 1082 |
+
xavier_normal_(self.bias_k)
|
| 1083 |
+
if self.bias_v is not None:
|
| 1084 |
+
xavier_normal_(self.bias_v)
|
| 1085 |
+
|
| 1086 |
+
def __setstate__(self, state):
|
| 1087 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
| 1088 |
+
if '_qkv_same_embed_dim' not in state:
|
| 1089 |
+
state['_qkv_same_embed_dim'] = True
|
| 1090 |
+
|
| 1091 |
+
super().__setstate__(state)
|
| 1092 |
+
|
| 1093 |
+
[docs] def forward(
|
| 1094 |
+
self,
|
| 1095 |
+
query: Tensor,
|
| 1096 |
+
key: Tensor,
|
| 1097 |
+
value: Tensor,
|
| 1098 |
+
key_padding_mask: Optional[Tensor] = None,
|
| 1099 |
+
need_weights: bool = True,
|
| 1100 |
+
attn_mask: Optional[Tensor] = None,
|
| 1101 |
+
average_attn_weights: bool = True,
|
| 1102 |
+
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
| 1103 |
+
r"""Compute attention outputs using query, key, and value embeddings.
|
| 1104 |
+
|
| 1105 |
+
Supports optional parameters for padding, masks and attention weights.
|
| 1106 |
+
|
| 1107 |
+
Args:
|
| 1108 |
+
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
| 1109 |
+
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
| 1110 |
+
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
| 1111 |
+
Queries are compared against key-value pairs to produce the output.
|
| 1112 |
+
See "Attention Is All You Need" for more details.
|
| 1113 |
+
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
| 1114 |
+
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
| 1115 |
+
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
| 1116 |
+
See "Attention Is All You Need" for more details.
|
| 1117 |
+
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
| 1118 |
+
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
| 1119 |
+
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
| 1120 |
+
See "Attention Is All You Need" for more details.
|
| 1121 |
+
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
| 1122 |
+
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
| 1123 |
+
Binary and float masks are supported.
|
| 1124 |
+
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
| 1125 |
+
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
| 1126 |
+
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
| 1127 |
+
Set ``need_weights=False`` to use the optimized ``scaled_dot_product_attention``
|
| 1128 |
+
and achieve the best performance for MHA.
|
| 1129 |
+
Default: ``True``.
|
| 1130 |
+
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
| 1131 |
+
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
| 1132 |
+
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
| 1133 |
+
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
| 1134 |
+
Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
| 1135 |
+
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
| 1136 |
+
the attention weight.
|
| 1137 |
+
If both attn_mask and key_padding_mask are supplied, their types should match.
|
| 1138 |
+
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
| 1139 |
+
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
| 1140 |
+
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
| 1141 |
+
is_causal: If specified, applies a causal mask as attention mask.
|
| 1142 |
+
Default: ``False``.
|
| 1143 |
+
Warning:
|
| 1144 |
+
``is_causal`` provides a hint that ``attn_mask`` is the
|
| 1145 |
+
causal mask. Providing incorrect hints can result in
|
| 1146 |
+
incorrect execution, including forward and backward
|
| 1147 |
+
compatibility.
|
| 1148 |
+
|
| 1149 |
+
Outputs:
|
| 1150 |
+
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
| 1151 |
+
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
| 1152 |
+
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
| 1153 |
+
embedding dimension ``embed_dim``.
|
| 1154 |
+
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
| 1155 |
+
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
| 1156 |
+
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
| 1157 |
+
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
| 1158 |
+
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
| 1159 |
+
|
| 1160 |
+
.. note::
|
| 1161 |
+
`batch_first` argument is ignored for unbatched inputs.
|
| 1162 |
+
"""
|
| 1163 |
+
why_not_fast_path = ''
|
| 1164 |
+
if ((attn_mask is not None and torch.is_floating_point(attn_mask))
|
| 1165 |
+
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
|
| 1166 |
+
why_not_fast_path = "floating-point masks are not supported for fast path."
|
| 1167 |
+
|
| 1168 |
+
is_batched = query.dim() == 3
|
| 1169 |
+
|
| 1170 |
+
key_padding_mask = F._canonical_mask(
|
| 1171 |
+
mask=key_padding_mask,
|
| 1172 |
+
mask_name="key_padding_mask",
|
| 1173 |
+
other_type=F._none_or_dtype(attn_mask),
|
| 1174 |
+
other_name="attn_mask",
|
| 1175 |
+
target_type=query.dtype
|
| 1176 |
+
)
|
| 1177 |
+
|
| 1178 |
+
attn_mask = F._canonical_mask(
|
| 1179 |
+
mask=attn_mask,
|
| 1180 |
+
mask_name="attn_mask",
|
| 1181 |
+
other_type=None,
|
| 1182 |
+
other_name="",
|
| 1183 |
+
target_type=query.dtype,
|
| 1184 |
+
check_other=False,
|
| 1185 |
+
)
|
| 1186 |
+
|
| 1187 |
+
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
|
| 1188 |
+
|
| 1189 |
+
if not is_fastpath_enabled:
|
| 1190 |
+
why_not_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
|
| 1191 |
+
elif not is_batched:
|
| 1192 |
+
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
| 1193 |
+
elif query is not key or key is not value:
|
| 1194 |
+
# When lifting this restriction, don't forget to either
|
| 1195 |
+
# enforce that the dtypes all match or test cases where
|
| 1196 |
+
# they don't!
|
| 1197 |
+
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
| 1198 |
+
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
| 1199 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
| 1200 |
+
elif self.in_proj_weight is None:
|
| 1201 |
+
why_not_fast_path = "in_proj_weight was None"
|
| 1202 |
+
elif query.dtype != self.in_proj_weight.dtype:
|
| 1203 |
+
# this case will fail anyway, but at least they'll get a useful error message.
|
| 1204 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
| 1205 |
+
elif self.training:
|
| 1206 |
+
why_not_fast_path = "training is enabled"
|
| 1207 |
+
elif (self.num_heads % 2) != 0:
|
| 1208 |
+
why_not_fast_path = "self.num_heads is not even"
|
| 1209 |
+
elif not self.batch_first:
|
| 1210 |
+
why_not_fast_path = "batch_first was not True"
|
| 1211 |
+
elif self.bias_k is not None:
|
| 1212 |
+
why_not_fast_path = "self.bias_k was not None"
|
| 1213 |
+
elif self.bias_v is not None:
|
| 1214 |
+
why_not_fast_path = "self.bias_v was not None"
|
| 1215 |
+
elif self.add_zero_attn:
|
| 1216 |
+
why_not_fast_path = "add_zero_attn was enabled"
|
| 1217 |
+
elif not self._qkv_same_embed_dim:
|
| 1218 |
+
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
| 1219 |
+
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
| 1220 |
+
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
|
| 1221 |
+
is not supported with NestedTensor input"
|
| 1222 |
+
elif torch.is_autocast_enabled():
|
| 1223 |
+
why_not_fast_path = "autocast is enabled"
|
| 1224 |
+
|
| 1225 |
+
if not why_not_fast_path:
|
| 1226 |
+
tensor_args = (
|
| 1227 |
+
query,
|
| 1228 |
+
key,
|
| 1229 |
+
value,
|
| 1230 |
+
self.in_proj_weight,
|
| 1231 |
+
self.in_proj_bias,
|
| 1232 |
+
self.out_proj.weight,
|
| 1233 |
+
self.out_proj.bias,
|
| 1234 |
+
)
|
| 1235 |
+
# We have to use list comprehensions below because TorchScript does not support
|
| 1236 |
+
# generator expressions.
|
| 1237 |
+
if torch.overrides.has_torch_function(tensor_args):
|
| 1238 |
+
why_not_fast_path = "some Tensor argument has_torch_function"
|
| 1239 |
+
elif _is_make_fx_tracing():
|
| 1240 |
+
why_not_fast_path = "we are running make_fx tracing"
|
| 1241 |
+
elif not all(_check_arg_device(x) for x in tensor_args):
|
| 1242 |
+
why_not_fast_path = ("some Tensor argument's device is neither one of "
|
| 1243 |
+
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
|
| 1244 |
+
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
|
| 1245 |
+
why_not_fast_path = ("grad is enabled and at least one of query or the "
|
| 1246 |
+
"input/output projection weights or biases requires_grad")
|
| 1247 |
+
if not why_not_fast_path:
|
| 1248 |
+
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
|
| 1249 |
+
|
| 1250 |
+
if self.in_proj_bias is not None and self.in_proj_weight is not None:
|
| 1251 |
+
return torch._native_multi_head_attention(
|
| 1252 |
+
query,
|
| 1253 |
+
key,
|
| 1254 |
+
value,
|
| 1255 |
+
self.embed_dim,
|
| 1256 |
+
self.num_heads,
|
| 1257 |
+
self.in_proj_weight,
|
| 1258 |
+
self.in_proj_bias,
|
| 1259 |
+
self.out_proj.weight,
|
| 1260 |
+
self.out_proj.bias,
|
| 1261 |
+
merged_mask,
|
| 1262 |
+
need_weights,
|
| 1263 |
+
average_attn_weights,
|
| 1264 |
+
mask_type)
|
| 1265 |
+
|
| 1266 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
| 1267 |
+
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
|
| 1268 |
+
f"The fast path was not hit because {why_not_fast_path}")
|
| 1269 |
+
|
| 1270 |
+
if self.batch_first and is_batched:
|
| 1271 |
+
# make sure that the transpose op does not affect the "is" property
|
| 1272 |
+
if key is value:
|
| 1273 |
+
if query is key:
|
| 1274 |
+
query = key = value = query.transpose(1, 0)
|
| 1275 |
+
else:
|
| 1276 |
+
query, key = (x.transpose(1, 0) for x in (query, key))
|
| 1277 |
+
value = key
|
| 1278 |
+
else:
|
| 1279 |
+
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
| 1280 |
+
|
| 1281 |
+
if not self._qkv_same_embed_dim:
|
| 1282 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
| 1283 |
+
query, key, value, self.embed_dim, self.num_heads,
|
| 1284 |
+
self.in_proj_weight, self.in_proj_bias,
|
| 1285 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
| 1286 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
| 1287 |
+
training=self.training,
|
| 1288 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
| 1289 |
+
attn_mask=attn_mask,
|
| 1290 |
+
use_separate_proj_weight=True,
|
| 1291 |
+
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
| 1292 |
+
v_proj_weight=self.v_proj_weight,
|
| 1293 |
+
average_attn_weights=average_attn_weights,
|
| 1294 |
+
is_causal=is_causal)
|
| 1295 |
+
else:
|
| 1296 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
| 1297 |
+
query, key, value, self.embed_dim, self.num_heads,
|
| 1298 |
+
self.in_proj_weight, self.in_proj_bias,
|
| 1299 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
| 1300 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
| 1301 |
+
training=self.training,
|
| 1302 |
+
key_padding_mask=key_padding_mask,
|
| 1303 |
+
need_weights=need_weights,
|
| 1304 |
+
attn_mask=attn_mask,
|
| 1305 |
+
average_attn_weights=average_attn_weights,
|
| 1306 |
+
is_causal=is_causal)
|
| 1307 |
+
if self.batch_first and is_batched:
|
| 1308 |
+
return attn_output.transpose(1, 0), attn_output_weights
|
| 1309 |
+
else:
|
| 1310 |
+
return attn_output, attn_output_weights
|
| 1311 |
+
|
| 1312 |
+
|
| 1313 |
+
[docs] def merge_masks(self, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor],
|
| 1314 |
+
query: Tensor) -> Tuple[Optional[Tensor], Optional[int]]:
|
| 1315 |
+
r"""Determine mask type and combine masks if necessary.
|
| 1316 |
+
|
| 1317 |
+
If only one mask is provided, that mask
|
| 1318 |
+
and the corresponding mask type will be returned. If both masks are provided, they will be both
|
| 1319 |
+
expanded to shape ``(batch_size, num_heads, seq_len, seq_len)``, combined with logical ``or``
|
| 1320 |
+
and mask type 2 will be returned
|
| 1321 |
+
Args:
|
| 1322 |
+
attn_mask: attention mask of shape ``(seq_len, seq_len)``, mask type 0
|
| 1323 |
+
key_padding_mask: padding mask of shape ``(batch_size, seq_len)``, mask type 1
|
| 1324 |
+
query: query embeddings of shape ``(batch_size, seq_len, embed_dim)``
|
| 1325 |
+
Returns:
|
| 1326 |
+
merged_mask: merged mask
|
| 1327 |
+
mask_type: merged mask type (0, 1, or 2)
|
| 1328 |
+
"""
|
| 1329 |
+
mask_type: Optional[int] = None
|
| 1330 |
+
merged_mask: Optional[Tensor] = None
|
| 1331 |
+
|
| 1332 |
+
if key_padding_mask is not None:
|
| 1333 |
+
mask_type = 1
|
| 1334 |
+
merged_mask = key_padding_mask
|
| 1335 |
+
|
| 1336 |
+
if attn_mask is not None:
|
| 1337 |
+
# In this branch query can't be a nested tensor, so it has a shape
|
| 1338 |
+
batch_size, seq_len, _ = query.shape
|
| 1339 |
+
mask_type = 2
|
| 1340 |
+
|
| 1341 |
+
# Always expands attn_mask to 4D
|
| 1342 |
+
if attn_mask.dim() == 3:
|
| 1343 |
+
attn_mask_expanded = attn_mask.view(batch_size, -1, seq_len, seq_len)
|
| 1344 |
+
else: # attn_mask.dim() == 2:
|
| 1345 |
+
attn_mask_expanded = attn_mask.view(1, 1, seq_len, seq_len).expand(batch_size, self.num_heads, -1, -1)
|
| 1346 |
+
merged_mask = attn_mask_expanded
|
| 1347 |
+
|
| 1348 |
+
if key_padding_mask is not None:
|
| 1349 |
+
key_padding_mask_expanded = key_padding_mask.view(batch_size, 1, 1, seq_len).expand(-1, self.num_heads, -1, -1)
|
| 1350 |
+
merged_mask = attn_mask_expanded + key_padding_mask_expanded
|
| 1351 |
+
|
| 1352 |
+
# no attn_mask and no key_padding_mask, returns None, None
|
| 1353 |
+
return merged_mask, mask_type
|
| 1354 |
+
|
| 1355 |
+
|
| 1356 |
+
|
| 1357 |
+
[docs]class PReLU(Module):
|
| 1358 |
+
r"""Applies the element-wise PReLU function.
|
| 1359 |
+
|
| 1360 |
+
.. math::
|
| 1361 |
+
\text{PReLU}(x) = \max(0,x) + a * \min(0,x)
|
| 1362 |
+
|
| 1363 |
+
or
|
| 1364 |
+
|
| 1365 |
+
.. math::
|
| 1366 |
+
\text{PReLU}(x) =
|
| 1367 |
+
\begin{cases}
|
| 1368 |
+
x, & \text{ if } x \ge 0 \\
|
| 1369 |
+
ax, & \text{ otherwise }
|
| 1370 |
+
\end{cases}
|
| 1371 |
+
|
| 1372 |
+
Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
|
| 1373 |
+
parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
|
| 1374 |
+
a separate :math:`a` is used for each input channel.
|
| 1375 |
+
|
| 1376 |
+
|
| 1377 |
+
.. note::
|
| 1378 |
+
weight decay should not be used when learning :math:`a` for good performance.
|
| 1379 |
+
|
| 1380 |
+
.. note::
|
| 1381 |
+
Channel dim is the 2nd dim of input. When input has dims < 2, then there is
|
| 1382 |
+
no channel dim and the number of channels = 1.
|
| 1383 |
+
|
| 1384 |
+
Args:
|
| 1385 |
+
num_parameters (int): number of :math:`a` to learn.
|
| 1386 |
+
Although it takes an int as input, there is only two values are legitimate:
|
| 1387 |
+
1, or the number of channels at input. Default: 1
|
| 1388 |
+
init (float): the initial value of :math:`a`. Default: 0.25
|
| 1389 |
+
|
| 1390 |
+
Shape:
|
| 1391 |
+
- Input: :math:`( *)` where `*` means, any number of additional
|
| 1392 |
+
dimensions.
|
| 1393 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 1394 |
+
|
| 1395 |
+
Attributes:
|
| 1396 |
+
weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).
|
| 1397 |
+
|
| 1398 |
+
.. image:: ../scripts/activation_images/PReLU.png
|
| 1399 |
+
|
| 1400 |
+
Examples::
|
| 1401 |
+
|
| 1402 |
+
>>> m = nn.PReLU()
|
| 1403 |
+
>>> input = torch.randn(2)
|
| 1404 |
+
>>> output = m(input)
|
| 1405 |
+
"""
|
| 1406 |
+
|
| 1407 |
+
__constants__ = ['num_parameters']
|
| 1408 |
+
num_parameters: int
|
| 1409 |
+
|
| 1410 |
+
def __init__(self, num_parameters: int = 1, init: float = 0.25,
|
| 1411 |
+
device=None, dtype=None) -> None:
|
| 1412 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
| 1413 |
+
self.num_parameters = num_parameters
|
| 1414 |
+
super().__init__()
|
| 1415 |
+
self.init = init
|
| 1416 |
+
self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs))
|
| 1417 |
+
self.reset_parameters()
|
| 1418 |
+
|
| 1419 |
+
def reset_parameters(self):
|
| 1420 |
+
torch.nn.init.constant_(self.weight, self.init)
|
| 1421 |
+
|
| 1422 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 1423 |
+
return F.prelu(input, self.weight)
|
| 1424 |
+
|
| 1425 |
+
def extra_repr(self) -> str:
|
| 1426 |
+
return f'num_parameters={self.num_parameters}'
|
| 1427 |
+
|
| 1428 |
+
|
| 1429 |
+
|
| 1430 |
+
[docs]class Softsign(Module):
|
| 1431 |
+
r"""Applies the element-wise Softsign function.
|
| 1432 |
+
|
| 1433 |
+
.. math::
|
| 1434 |
+
\text{SoftSign}(x) = \frac{x}{ 1 + |x|}
|
| 1435 |
+
|
| 1436 |
+
Shape:
|
| 1437 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 1438 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 1439 |
+
|
| 1440 |
+
.. image:: ../scripts/activation_images/Softsign.png
|
| 1441 |
+
|
| 1442 |
+
Examples::
|
| 1443 |
+
|
| 1444 |
+
>>> m = nn.Softsign()
|
| 1445 |
+
>>> input = torch.randn(2)
|
| 1446 |
+
>>> output = m(input)
|
| 1447 |
+
"""
|
| 1448 |
+
|
| 1449 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 1450 |
+
return F.softsign(input)
|
| 1451 |
+
|
| 1452 |
+
|
| 1453 |
+
|
| 1454 |
+
[docs]class Tanhshrink(Module):
|
| 1455 |
+
r"""Applies the element-wise Tanhshrink function.
|
| 1456 |
+
|
| 1457 |
+
.. math::
|
| 1458 |
+
\text{Tanhshrink}(x) = x - \tanh(x)
|
| 1459 |
+
|
| 1460 |
+
Shape:
|
| 1461 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
| 1462 |
+
- Output: :math:`(*)`, same shape as the input.
|
| 1463 |
+
|
| 1464 |
+
.. image:: ../scripts/activation_images/Tanhshrink.png
|
| 1465 |
+
|
| 1466 |
+
Examples::
|
| 1467 |
+
|
| 1468 |
+
>>> m = nn.Tanhshrink()
|
| 1469 |
+
>>> input = torch.randn(2)
|
| 1470 |
+
>>> output = m(input)
|
| 1471 |
+
"""
|
| 1472 |
+
|
| 1473 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 1474 |
+
return F.tanhshrink(input)
|
| 1475 |
+
|
| 1476 |
+
|
| 1477 |
+
|
| 1478 |
+
[docs]class Softmin(Module):
|
| 1479 |
+
r"""Applies the Softmin function to an n-dimensional input Tensor.
|
| 1480 |
+
|
| 1481 |
+
Rescales them so that the elements of the n-dimensional output Tensor
|
| 1482 |
+
lie in the range `[0, 1]` and sum to 1.
|
| 1483 |
+
|
| 1484 |
+
Softmin is defined as:
|
| 1485 |
+
|
| 1486 |
+
.. math::
|
| 1487 |
+
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
|
| 1488 |
+
|
| 1489 |
+
Shape:
|
| 1490 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
| 1491 |
+
dimensions
|
| 1492 |
+
- Output: :math:`(*)`, same shape as the input
|
| 1493 |
+
|
| 1494 |
+
Args:
|
| 1495 |
+
dim (int): A dimension along which Softmin will be computed (so every slice
|
| 1496 |
+
along dim will sum to 1).
|
| 1497 |
+
|
| 1498 |
+
Returns:
|
| 1499 |
+
a Tensor of the same dimension and shape as the input, with
|
| 1500 |
+
values in the range [0, 1]
|
| 1501 |
+
|
| 1502 |
+
Examples::
|
| 1503 |
+
|
| 1504 |
+
>>> m = nn.Softmin(dim=1)
|
| 1505 |
+
>>> input = torch.randn(2, 3)
|
| 1506 |
+
>>> output = m(input)
|
| 1507 |
+
"""
|
| 1508 |
+
|
| 1509 |
+
__constants__ = ['dim']
|
| 1510 |
+
dim: Optional[int]
|
| 1511 |
+
|
| 1512 |
+
def __init__(self, dim: Optional[int] = None) -> None:
|
| 1513 |
+
super().__init__()
|
| 1514 |
+
self.dim = dim
|
| 1515 |
+
|
| 1516 |
+
def __setstate__(self, state):
|
| 1517 |
+
super().__setstate__(state)
|
| 1518 |
+
if not hasattr(self, 'dim'):
|
| 1519 |
+
self.dim = None
|
| 1520 |
+
|
| 1521 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 1522 |
+
return F.softmin(input, self.dim, _stacklevel=5)
|
| 1523 |
+
|
| 1524 |
+
def extra_repr(self):
|
| 1525 |
+
return f'dim={self.dim}'
|
| 1526 |
+
|
| 1527 |
+
|
| 1528 |
+
[docs]class Softmax(Module):
|
| 1529 |
+
r"""Applies the Softmax function to an n-dimensional input Tensor.
|
| 1530 |
+
|
| 1531 |
+
Rescales them so that the elements of the n-dimensional output Tensor
|
| 1532 |
+
lie in the range [0,1] and sum to 1.
|
| 1533 |
+
|
| 1534 |
+
Softmax is defined as:
|
| 1535 |
+
|
| 1536 |
+
.. math::
|
| 1537 |
+
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
| 1538 |
+
|
| 1539 |
+
When the input Tensor is a sparse tensor then the unspecified
|
| 1540 |
+
values are treated as ``-inf``.
|
| 1541 |
+
|
| 1542 |
+
Shape:
|
| 1543 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
| 1544 |
+
dimensions
|
| 1545 |
+
- Output: :math:`(*)`, same shape as the input
|
| 1546 |
+
|
| 1547 |
+
Returns:
|
| 1548 |
+
a Tensor of the same dimension and shape as the input with
|
| 1549 |
+
values in the range [0, 1]
|
| 1550 |
+
|
| 1551 |
+
Args:
|
| 1552 |
+
dim (int): A dimension along which Softmax will be computed (so every slice
|
| 1553 |
+
along dim will sum to 1).
|
| 1554 |
+
|
| 1555 |
+
.. note::
|
| 1556 |
+
This module doesn't work directly with NLLLoss,
|
| 1557 |
+
which expects the Log to be computed between the Softmax and itself.
|
| 1558 |
+
Use `LogSoftmax` instead (it's faster and has better numerical properties).
|
| 1559 |
+
|
| 1560 |
+
Examples::
|
| 1561 |
+
|
| 1562 |
+
>>> m = nn.Softmax(dim=1)
|
| 1563 |
+
>>> input = torch.randn(2, 3)
|
| 1564 |
+
>>> output = m(input)
|
| 1565 |
+
|
| 1566 |
+
"""
|
| 1567 |
+
|
| 1568 |
+
__constants__ = ['dim']
|
| 1569 |
+
dim: Optional[int]
|
| 1570 |
+
|
| 1571 |
+
def __init__(self, dim: Optional[int] = None) -> None:
|
| 1572 |
+
super().__init__()
|
| 1573 |
+
self.dim = dim
|
| 1574 |
+
|
| 1575 |
+
def __setstate__(self, state):
|
| 1576 |
+
super().__setstate__(state)
|
| 1577 |
+
if not hasattr(self, 'dim'):
|
| 1578 |
+
self.dim = None
|
| 1579 |
+
|
| 1580 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 1581 |
+
return F.softmax(input, self.dim, _stacklevel=5)
|
| 1582 |
+
|
| 1583 |
+
def extra_repr(self) -> str:
|
| 1584 |
+
return f'dim={self.dim}'
|
| 1585 |
+
|
| 1586 |
+
|
| 1587 |
+
|
| 1588 |
+
[docs]class Softmax2d(Module):
|
| 1589 |
+
r"""Applies SoftMax over features to each spatial location.
|
| 1590 |
+
|
| 1591 |
+
When given an image of ``Channels x Height x Width``, it will
|
| 1592 |
+
apply `Softmax` to each location :math:`(Channels, h_i, w_j)`
|
| 1593 |
+
|
| 1594 |
+
Shape:
|
| 1595 |
+
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`.
|
| 1596 |
+
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
|
| 1597 |
+
|
| 1598 |
+
Returns:
|
| 1599 |
+
a Tensor of the same dimension and shape as the input with
|
| 1600 |
+
values in the range [0, 1]
|
| 1601 |
+
|
| 1602 |
+
Examples::
|
| 1603 |
+
|
| 1604 |
+
>>> m = nn.Softmax2d()
|
| 1605 |
+
>>> # you softmax over the 2nd dimension
|
| 1606 |
+
>>> input = torch.randn(2, 3, 12, 13)
|
| 1607 |
+
>>> output = m(input)
|
| 1608 |
+
"""
|
| 1609 |
+
|
| 1610 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 1611 |
+
if input.dim() not in (3, 4):
|
| 1612 |
+
raise ValueError(
|
| 1613 |
+
f"Softmax2d: expected input to be 3D or 4D, got {input.dim()}D instead"
|
| 1614 |
+
)
|
| 1615 |
+
return F.softmax(input, -3, _stacklevel=5)
|
| 1616 |
+
|
| 1617 |
+
|
| 1618 |
+
|
| 1619 |
+
[docs]class LogSoftmax(Module):
|
| 1620 |
+
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor.
|
| 1621 |
+
|
| 1622 |
+
The LogSoftmax formulation can be simplified as:
|
| 1623 |
+
|
| 1624 |
+
.. math::
|
| 1625 |
+
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
|
| 1626 |
+
|
| 1627 |
+
Shape:
|
| 1628 |
+
- Input: :math:`(*)` where `*` means, any number of additional
|
| 1629 |
+
dimensions
|
| 1630 |
+
- Output: :math:`(*)`, same shape as the input
|
| 1631 |
+
|
| 1632 |
+
Args:
|
| 1633 |
+
dim (int): A dimension along which LogSoftmax will be computed.
|
| 1634 |
+
|
| 1635 |
+
Returns:
|
| 1636 |
+
a Tensor of the same dimension and shape as the input with
|
| 1637 |
+
values in the range [-inf, 0)
|
| 1638 |
+
|
| 1639 |
+
Examples::
|
| 1640 |
+
|
| 1641 |
+
>>> m = nn.LogSoftmax(dim=1)
|
| 1642 |
+
>>> input = torch.randn(2, 3)
|
| 1643 |
+
>>> output = m(input)
|
| 1644 |
+
"""
|
| 1645 |
+
|
| 1646 |
+
__constants__ = ['dim']
|
| 1647 |
+
dim: Optional[int]
|
| 1648 |
+
|
| 1649 |
+
def __init__(self, dim: Optional[int] = None) -> None:
|
| 1650 |
+
super().__init__()
|
| 1651 |
+
self.dim = dim
|
| 1652 |
+
|
| 1653 |
+
def __setstate__(self, state):
|
| 1654 |
+
super().__setstate__(state)
|
| 1655 |
+
if not hasattr(self, 'dim'):
|
| 1656 |
+
self.dim = None
|
| 1657 |
+
|
| 1658 |
+
def forward(self, input: Tensor) -> Tensor:
|
| 1659 |
+
return F.log_softmax(input, self.dim, _stacklevel=5)
|
| 1660 |
+
|
| 1661 |
+
def extra_repr(self):
|
| 1662 |
+
return f'dim={self.dim}'
|