Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,6 +14,8 @@ from chromadb.utils import embedding_functions
|
|
| 14 |
from FlagEmbedding import BGEM3FlagModel
|
| 15 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 16 |
|
|
|
|
|
|
|
| 17 |
model = BGEM3FlagModel('BAAI/bge-m3',
|
| 18 |
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 19 |
|
|
@@ -22,16 +24,16 @@ embeddings_data = pd.read_json("embeddings_tchap.json")
|
|
| 22 |
embeddings_text = embeddings_data["text_with_context"].tolist()
|
| 23 |
|
| 24 |
# Define the device
|
| 25 |
-
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
-
#Define variables
|
| 27 |
temperature=0.2
|
| 28 |
max_new_tokens=1000
|
| 29 |
top_p=0.92
|
| 30 |
repetition_penalty=1.7
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
|
| 36 |
system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nTu es Albert, l'agent conversationnel des services publics qui peut décrire des documents de référence ou aider à des tâches de rédaction<|eot_id|>"
|
| 37 |
|
|
@@ -78,7 +80,7 @@ def predict(message, history):
|
|
| 78 |
|
| 79 |
messages = system_prompt + messages
|
| 80 |
|
| 81 |
-
|
| 82 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 83 |
generate_kwargs = dict(
|
| 84 |
model_inputs,
|
|
@@ -98,7 +100,7 @@ def predict(message, history):
|
|
| 98 |
for new_token in streamer:
|
| 99 |
if new_token != '<':
|
| 100 |
partial_message += new_token
|
| 101 |
-
yield partial_message
|
| 102 |
return messages
|
| 103 |
|
| 104 |
# Define the Gradio interface
|
|
|
|
| 14 |
from FlagEmbedding import BGEM3FlagModel
|
| 15 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 16 |
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
|
| 19 |
model = BGEM3FlagModel('BAAI/bge-m3',
|
| 20 |
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 21 |
|
|
|
|
| 24 |
embeddings_text = embeddings_data["text_with_context"].tolist()
|
| 25 |
|
| 26 |
# Define the device
|
|
|
|
|
|
|
| 27 |
temperature=0.2
|
| 28 |
max_new_tokens=1000
|
| 29 |
top_p=0.92
|
| 30 |
repetition_penalty=1.7
|
| 31 |
|
| 32 |
+
model_name = "Pclanglais/Tchap"
|
| 33 |
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 36 |
+
model = model.to('cuda:0')
|
| 37 |
|
| 38 |
system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nTu es Albert, l'agent conversationnel des services publics qui peut décrire des documents de référence ou aider à des tâches de rédaction<|eot_id|>"
|
| 39 |
|
|
|
|
| 80 |
|
| 81 |
messages = system_prompt + messages
|
| 82 |
|
| 83 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
| 84 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 85 |
generate_kwargs = dict(
|
| 86 |
model_inputs,
|
|
|
|
| 100 |
for new_token in streamer:
|
| 101 |
if new_token != '<':
|
| 102 |
partial_message += new_token
|
| 103 |
+
yield partial_message
|
| 104 |
return messages
|
| 105 |
|
| 106 |
# Define the Gradio interface
|