Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,26 +7,25 @@ from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoM
|
|
| 7 |
from peft import PeftModel, PeftConfig
|
| 8 |
import torch
|
| 9 |
import gradio as gr
|
| 10 |
-
# Functions to Wrap the Prompt Correctly
|
| 11 |
|
|
|
|
| 12 |
def wrap_text(text, width=90):
|
| 13 |
lines = text.split('\n')
|
| 14 |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
| 15 |
wrapped_text = '\n'.join(wrapped_lines)
|
| 16 |
return wrapped_text
|
| 17 |
|
| 18 |
-
def multimodal_prompt(
|
| 19 |
"""
|
| 20 |
-
Generates text using a large language model, given a
|
| 21 |
Args:
|
| 22 |
-
|
| 23 |
system_prompt: Optional system prompt.
|
| 24 |
-
max_length: Maximum length of the generated text.
|
| 25 |
Returns:
|
| 26 |
A string containing the generated text.
|
| 27 |
"""
|
| 28 |
-
#
|
| 29 |
-
formatted_input = f"
|
| 30 |
|
| 31 |
# Encode the input text
|
| 32 |
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
|
@@ -50,7 +49,6 @@ def multimodal_prompt(input_text, system_prompt="", max_length=512):
|
|
| 50 |
|
| 51 |
return response_text
|
| 52 |
|
| 53 |
-
|
| 54 |
# Define the device
|
| 55 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
|
|
@@ -64,7 +62,6 @@ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_rem
|
|
| 64 |
tokenizer.pad_token = tokenizer.eos_token
|
| 65 |
tokenizer.padding_side = 'left'
|
| 66 |
|
| 67 |
-
|
| 68 |
# Specify the configuration class for the model
|
| 69 |
#model_config = AutoConfig.from_pretrained(base_model_id)
|
| 70 |
|
|
@@ -80,9 +77,12 @@ class ChatBot:
|
|
| 80 |
def __init__(self):
|
| 81 |
self.history = []
|
| 82 |
|
| 83 |
-
def predict(self,
|
|
|
|
|
|
|
|
|
|
| 84 |
# Encode user input
|
| 85 |
-
user_input_ids = tokenizer.encode(
|
| 86 |
|
| 87 |
# Concatenate the user input with chat history
|
| 88 |
if len(self.history) > 0:
|
|
@@ -104,15 +104,14 @@ bot = ChatBot()
|
|
| 104 |
|
| 105 |
title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
|
| 106 |
description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
|
| 107 |
-
examples = [["
|
| 108 |
-
|
| 109 |
|
| 110 |
iface = gr.Interface(
|
| 111 |
fn=bot.predict,
|
| 112 |
title=title,
|
| 113 |
description=description,
|
| 114 |
examples=examples,
|
| 115 |
-
inputs="text",
|
| 116 |
outputs="text",
|
| 117 |
theme="ParityError/Anime"
|
| 118 |
)
|
|
|
|
| 7 |
from peft import PeftModel, PeftConfig
|
| 8 |
import torch
|
| 9 |
import gradio as gr
|
|
|
|
| 10 |
|
| 11 |
+
# Functions to Wrap the Prompt Correctly
|
| 12 |
def wrap_text(text, width=90):
|
| 13 |
lines = text.split('\n')
|
| 14 |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
| 15 |
wrapped_text = '\n'.join(wrapped_lines)
|
| 16 |
return wrapped_text
|
| 17 |
|
| 18 |
+
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
| 19 |
"""
|
| 20 |
+
Generates text using a large language model, given a user input and a system prompt.
|
| 21 |
Args:
|
| 22 |
+
user_input: The user's input text to generate a response for.
|
| 23 |
system_prompt: Optional system prompt.
|
|
|
|
| 24 |
Returns:
|
| 25 |
A string containing the generated text.
|
| 26 |
"""
|
| 27 |
+
# Combine user input and system prompt
|
| 28 |
+
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
| 29 |
|
| 30 |
# Encode the input text
|
| 31 |
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
|
|
|
| 49 |
|
| 50 |
return response_text
|
| 51 |
|
|
|
|
| 52 |
# Define the device
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
|
|
|
|
| 62 |
tokenizer.pad_token = tokenizer.eos_token
|
| 63 |
tokenizer.padding_side = 'left'
|
| 64 |
|
|
|
|
| 65 |
# Specify the configuration class for the model
|
| 66 |
#model_config = AutoConfig.from_pretrained(base_model_id)
|
| 67 |
|
|
|
|
| 77 |
def __init__(self):
|
| 78 |
self.history = []
|
| 79 |
|
| 80 |
+
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
| 81 |
+
# Combine user input and system prompt
|
| 82 |
+
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
| 83 |
+
|
| 84 |
# Encode user input
|
| 85 |
+
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
| 86 |
|
| 87 |
# Concatenate the user input with chat history
|
| 88 |
if len(self.history) > 0:
|
|
|
|
| 104 |
|
| 105 |
title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
|
| 106 |
description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
|
| 107 |
+
examples = [["What is the proper treatment for buccal herpes?"]]
|
|
|
|
| 108 |
|
| 109 |
iface = gr.Interface(
|
| 110 |
fn=bot.predict,
|
| 111 |
title=title,
|
| 112 |
description=description,
|
| 113 |
examples=examples,
|
| 114 |
+
inputs=["text", "text"], # Take user input and system prompt separately
|
| 115 |
outputs="text",
|
| 116 |
theme="ParityError/Anime"
|
| 117 |
)
|