Spaces:
Runtime error
Runtime error
File size: 3,214 Bytes
f506d75 6ebcdab ece93a7 3dc4061 f506d75 81395fc 237d9d2 3202d1b f506d75 81395fc f506d75 81395fc d992640 237d9d2 b01335d f506d75 4094ebf f506d75 3856ed3 4094ebf 72b512b b01335d 3202d1b b01335d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr
import os
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b', token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-zephyr-3b',
trust_remote_code=True,
device_map="auto",
token=hf_token
)
model.to(device)
class ChatBot:
def __init__(self):
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
prompt = [{'role': 'user', 'content': user_input}, {'role': 'system', 'content': system_prompt}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
# Generate a response using the model
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.8,
do_sample=True
)
# Decode and return the response
response_text = tokenizer.decode(tokens[0], skip_special_tokens=False)
return response_text
bot = ChatBot()
title = "ππ»Welcome to πTonic'sπ½StableπLM 3BπChat"
description = """
You can use this Space to test out the current model [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b)
You can also use π·StableMedβοΈ on your laptop & by cloning this space. π§¬π¬π Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/TonicsStableLM3B?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : πTeamTonicπ is always making cool demos! Join our active builder'sπ οΈcommunity on π»Discord: [Discord](https://discord.gg/GWpVpekp) On π€Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On πGithub: [Polytonic](https://github.com/tonic-ai) & contribute to π [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"], # Take user input and system prompt separately
outputs="text",
theme="ParityError/Anime"
)
iface.launch()
|