File size: 1,388 Bytes
05e7387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr

from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor

from PIL import Image

import requests

import torch

import spaces

# Load the processor and model

processor = LlavaNextProcessor.from_pretrained("tiiuae/falcon-11B-vlm", tokenizer_class='PreTrainedTokenizerFast')

model = LlavaNextForConditionalGeneration.from_pretrained("tiiuae/falcon-11B-vlm", torch_dtype=torch.bfloat16).to('cuda:0')


@spaces.GPU
def generate_paragraph(image_url):

    cats_image = Image.open(requests.get(image_url, stream=True).raw)

    instruction = 'Write a long paragraph about this picture.'

    

    prompt = f"User:<image>\n{instruction} Falcon:"

    inputs = processor(prompt, images=cats_image, return_tensors="pt", padding=True).to('cuda:0')

    

    output = model.generate(**inputs, max_new_tokens=256)

    generated_captions = processor.decode(output[0], skip_special_tokens=True).strip()

    

    return generated_captions



# Define the Gradio interface

interface = gr.Interface(

    fn=generate_paragraph,

    inputs=gr.inputs.Textbox(label="Image URL"),

    outputs=gr.outputs.Textbox(label="Generated Paragraph"),

    title="Image to Paragraph Generation",

    description="Enter the URL of an image, and the model will generate a descriptive paragraph about the image."

)



# Launch the Gradio interface

interface.launch()