Spaces:
Sleeping
Sleeping
File size: 7,785 Bytes
e6d07cd 4d6e8c2 4477f42 4d6e8c2 e6d07cd ece5856 7abed63 4d6e8c2 f3f30d7 4d6e8c2 e6d07cd e33fed0 4d6e8c2 4477f42 1c33274 70f5f26 e6d07cd 4477f42 e6d07cd 7abed63 e6d07cd 7abed63 08e3356 e6d07cd 7abed63 e6d07cd 7abed63 e6d07cd 4477f42 7abed63 08e3356 7abed63 08e3356 7abed63 08e3356 7abed63 4477f42 e6d07cd 7abed63 e6d07cd 7abed63 e6d07cd 4477f42 4d6e8c2 4477f42 e6d07cd 6f0e9af ada5a12 6f0e9af ada5a12 6f0e9af f3f30d7 6f0e9af e6d07cd 6f0e9af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from fastapi import APIRouter
from datetime import datetime
import time
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Tuple
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info, start_tracking, stop_tracking
# Disable torch compile
os.environ["TORCH_COMPILE_DISABLE"] = "1"
router = APIRouter()
DESCRIPTION = "Climate Guard Toxic Agent Classifier"
ROUTE = "/text"
class TextClassifier:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
max_retries = 3
model_name = "Tonic/climate-guard-toxic-agent"
for attempt in range(max_retries):
try:
# Load config first
config = AutoConfig.from_pretrained(model_name)
# Initialize tokenizer with specific model type
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
model_max_length=512,
padding_side='right',
truncation_side='right'
)
# Initialize model with config
self.model = AutoModelForSequenceClassification.from_pretrained(
model_name,
config=config,
torch_dtype=torch.float32
)
self.model.to(self.device)
self.model.eval()
print("Model initialized successfully")
break
except Exception as e:
if attempt == max_retries - 1:
raise Exception(f"Failed to initialize model after {max_retries} attempts: {str(e)}")
print(f"Attempt {attempt + 1} failed, retrying... Error: {str(e)}")
time.sleep(1)
def predict_single(self, text: str) -> int:
"""Predict single text instance"""
try:
# Tokenize with explicit padding and truncation
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=512,
padding='max_length'
).to(self.device)
# Get prediction
with torch.no_grad():
outputs = self.model(**inputs)
predictions = torch.argmax(outputs.logits, dim=-1)
return predictions.item()
except Exception as e:
print(f"Error in single prediction: {str(e)}")
return 0 # Return default prediction on error
def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]:
"""Process a batch of texts and return their predictions"""
try:
print(f"Processing batch {batch_idx} with {len(batch)} items")
# Process entire batch at once
inputs = self.tokenizer(
batch,
return_tensors="pt",
truncation=True,
max_length=512,
padding='max_length'
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
predictions = torch.argmax(outputs.logits, dim=-1).tolist()
print(f"Completed batch {batch_idx} with {len(predictions)} predictions")
return predictions, batch_idx
except Exception as e:
print(f"Error in batch {batch_idx}: {str(e)}")
return [0] * len(batch), batch_idx
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""Evaluate text classification for climate disinformation detection."""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
try:
# Load and prepare the dataset using the dataset name from the request
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset according to request parameters
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
true_labels = test_dataset["label"]
# Initialize the model once
classifier = TextClassifier()
# Prepare batches
batch_size = 32
quotes = test_dataset["quote"]
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
batches = [
quotes[i * batch_size:(i + 1) * batch_size]
for i in range(num_batches)
]
# Initialize batch_results
batch_results = [[] for _ in range(num_batches)]
# Process batches in parallel
max_workers = min(os.cpu_count(), 4)
print(f"Processing with {max_workers} workers")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_batch = {
executor.submit(classifier.process_batch, batch, idx): idx
for idx, batch in enumerate(batches)
}
for future in future_to_batch:
batch_idx = future_to_batch[future]
try:
predictions, idx = future.result()
if predictions:
batch_results[idx] = predictions
print(f"Stored results for batch {idx} ({len(predictions)} predictions)")
except Exception as e:
print(f"Failed to get results for batch {batch_idx}: {e}")
batch_results[batch_idx] = [0] * len(batches[batch_idx])
# Flatten predictions
predictions = []
for batch_preds in batch_results:
if batch_preds is not None:
predictions.extend(batch_preds)
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
print("accuracy:", accuracy)
# Prepare results
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
print("results:", results)
return results
except Exception as e:
print(f"Error in evaluate_text: {str(e)}")
raise Exception(f"Failed to process request: {str(e)}") |