Spaces:
Sleeping
Sleeping
revert to autoconfig
Browse files- tasks/text.py +13 -9
tasks/text.py
CHANGED
@@ -3,7 +3,7 @@ from datetime import datetime
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import torch
|
6 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from torch.utils.data import DataLoader
|
8 |
from transformers import DataCollatorWithPadding
|
9 |
|
@@ -53,6 +53,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
53 |
# MODEL INFERENCE CODE
|
54 |
#--------------------------------------------------------------------------------------------
|
55 |
|
|
|
56 |
try:
|
57 |
# Set device
|
58 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -64,20 +65,22 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
64 |
# Initialize tokenizer
|
65 |
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)
|
66 |
|
67 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
model = AutoModelForSequenceClassification.from_pretrained(
|
69 |
path_model,
|
|
|
70 |
trust_remote_code=True,
|
71 |
num_labels=8,
|
72 |
problem_type="single_label_classification",
|
73 |
ignore_mismatched_sizes=True,
|
74 |
-
torch_dtype=torch.float16
|
75 |
-
config_overrides={
|
76 |
-
"norm_bias": None, # Remove bias parameter
|
77 |
-
"classifier_bias": None,
|
78 |
-
"attention_bias": None,
|
79 |
-
"mlp_bias": None
|
80 |
-
}
|
81 |
).to(device)
|
82 |
|
83 |
# Set model to evaluation mode
|
@@ -133,6 +136,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
133 |
print(f"Error during model inference: {str(e)}")
|
134 |
raise
|
135 |
|
|
|
136 |
#--------------------------------------------------------------------------------------------
|
137 |
# MODEL INFERENCE ENDS HERE
|
138 |
#--------------------------------------------------------------------------------------------
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
|
7 |
from torch.utils.data import DataLoader
|
8 |
from transformers import DataCollatorWithPadding
|
9 |
|
|
|
53 |
# MODEL INFERENCE CODE
|
54 |
#--------------------------------------------------------------------------------------------
|
55 |
|
56 |
+
|
57 |
try:
|
58 |
# Set device
|
59 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
65 |
# Initialize tokenizer
|
66 |
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)
|
67 |
|
68 |
+
# Load and modify config
|
69 |
+
config = AutoConfig.from_pretrained(path_model)
|
70 |
+
config.norm_bias = False
|
71 |
+
config.classifier_bias = False
|
72 |
+
config.attention_bias = False
|
73 |
+
config.mlp_bias = False
|
74 |
+
|
75 |
+
# Initialize model with modified config
|
76 |
model = AutoModelForSequenceClassification.from_pretrained(
|
77 |
path_model,
|
78 |
+
config=config,
|
79 |
trust_remote_code=True,
|
80 |
num_labels=8,
|
81 |
problem_type="single_label_classification",
|
82 |
ignore_mismatched_sizes=True,
|
83 |
+
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
).to(device)
|
85 |
|
86 |
# Set model to evaluation mode
|
|
|
136 |
print(f"Error during model inference: {str(e)}")
|
137 |
raise
|
138 |
|
139 |
+
|
140 |
#--------------------------------------------------------------------------------------------
|
141 |
# MODEL INFERENCE ENDS HERE
|
142 |
#--------------------------------------------------------------------------------------------
|