File size: 5,763 Bytes
757241b
 
 
 
 
 
 
 
 
 
 
 
 
 
e382347
757241b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3e817
 
 
 
 
 
 
757241b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import gradio as gr
import spaces
import re
from peft import PeftModel

# Load the base model
try:
    base_model = AutoModelForCausalLM.from_pretrained(
        "openai/gpt-oss-20b",
        torch_dtype="auto",
        device_map="auto",
        attn_implementation="kernels-community/vllm-flash-attention3"
    )
    tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
    
    # Load the LoRA adapter
    try:
        model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner")
        print("✅ LoRA model loaded successfully!")
    except Exception as lora_error:
        print(f"⚠️ LoRA adapter failed to load: {lora_error}")
        print("🔄 Falling back to base model...")
        model = base_model
        
except Exception as e:
    print(f"❌ Error loading model: {e}")
    raise e

def format_conversation_history(chat_history):
    messages = []
    for item in chat_history:
        role = item["role"]
        content = item["content"]
        if isinstance(content, list):
            content = content[0]["text"] if content and "text" in content[0] else str(content)
        messages.append({"role": role, "content": content})
    return messages

@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
    new_message = {"role": "user", "content": input_data}
    system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
    processed_history = format_conversation_history(chat_history)
    messages = system_message + processed_history + [new_message]
    
    # Use the model's chat template to format the conversation properly
    # This is crucial for GPT-OSS-20B which expects the Harmony format
    prompt = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    
    # Alternative streaming approach with manual chunking
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    # Generate in smaller chunks for better streaming
    chunk_size = 50  # Generate 50 tokens at a time
    full_response = ""
    
    with torch.no_grad():
        for i in range(0, max_new_tokens, chunk_size):
            current_max_tokens = min(chunk_size, max_new_tokens - i)
            
            outputs = model.generate(
                **inputs,
                max_new_tokens=current_max_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                top_k=top_k,
                repetition_penalty=repetition_penalty,
                pad_token_id=tokenizer.eos_token_id,
                use_cache=True
            )
            
            # Decode the new tokens
            new_tokens = outputs[0][inputs["input_ids"].shape[1]:]
            new_text = tokenizer.decode(new_tokens, skip_special_tokens=True)
            
            if new_text:
                full_response += new_text
                
                # Process for thinking/final split
                thinking = ""
                final = ""
                started_final = False
                
                if "assistantfinal" in full_response.lower():
                    split_parts = re.split(r'assistantfinal', full_response, maxsplit=1)
                    thinking = split_parts[0]
                    final = split_parts[1] if len(split_parts) > 1 else ""
                    started_final = True
                else:
                    thinking = full_response
                
                clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
                clean_final = final.strip()
                formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
                yield formatted
            
            # Update inputs for next iteration
            inputs = {"input_ids": outputs}
            
            # Check for end of generation
            if outputs[0][-1].item() == tokenizer.eos_token_id:
                break

demo = gr.ChatInterface(
    fn=generate_response,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
        gr.Textbox(
            label="System Prompt",
            value="You are a helpful assistant. Reasoning: medium",
            lines=4,
            placeholder="Change system prompt"
        ),
        gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
        gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
        gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
    ],
    examples=[
        [{"text": "Explain Newton laws clearly and concisely"}],
        [{"text": "Write a Python function to calculate the Fibonacci sequence"}],
        [{"text": "What are the benefits of open weight AI models"}],
    ],
    cache_examples=False,
    type="messages",
    description="""
# 🙋🏻‍♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo !
Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high.
    """,
    fill_height=True,
    textbox=gr.Textbox(
        label="Query Input",
        placeholder="Type your prompt"
    ),
    stop_btn="Stop Generation",
    multimodal=False,
    theme=gr.themes.Soft()
)

if __name__ == "__main__":
    demo.launch(share=True)