from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import torch from threading import Thread import gradio as gr import spaces import re from peft import PeftModel # Load the base model try: base_model = AutoModelForCausalLM.from_pretrained( "openai/gpt-oss-20b", torch_dtype="auto", device_map="auto", attn_implementation="kernels-community/vllm-flash-attention3" ) tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") # Load the LoRA adapter try: model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner") print("✅ LoRA model loaded successfully!") except Exception as lora_error: print(f"⚠️ LoRA adapter failed to load: {lora_error}") print("🔄 Falling back to base model...") model = base_model except Exception as e: print(f"❌ Error loading model: {e}") raise e def format_conversation_history(chat_history): messages = [] for item in chat_history: role = item["role"] content = item["content"] if isinstance(content, list): content = content[0]["text"] if content and "text" in content[0] else str(content) messages.append({"role": role, "content": content}) return messages def create_harmony_prompt(messages, reasoning_level="medium"): """ Create a proper Harmony format prompt for GPT-OSS-20B Based on the Harmony format from https://github.com/openai/harmony """ # Start with system message in Harmony format system_content = f"""You are ChatGPT, a large language model trained by OpenAI. Knowledge cutoff: 2024-06 Current date: 2025-01-28 Reasoning: {reasoning_level} # Valid channels: analysis, commentary, final. Channel must be included for every message.""" # Build the prompt in Harmony format prompt_parts = [] # Add system message prompt_parts.append(f"<|start|>system<|message|>{system_content}<|end|>") # Add conversation messages for message in messages: role = message["role"] content = message["content"] if role == "system": # Skip system messages as we already added the main one continue elif role == "user": prompt_parts.append(f"<|start|>user<|message|>{content}<|end|>") elif role == "assistant": prompt_parts.append(f"<|start|>assistant<|message|>{content}<|end|>") # Add the generation prompt prompt_parts.append("<|start|>assistant") return "\n".join(prompt_parts) @spaces.GPU(duration=60) def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): new_message = {"role": "user", "content": input_data} system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] processed_history = format_conversation_history(chat_history) messages = system_message + processed_history + [new_message] # Extract reasoning level from system prompt reasoning_level = "medium" if "reasoning:" in system_prompt.lower(): if "high" in system_prompt.lower(): reasoning_level = "high" elif "low" in system_prompt.lower(): reasoning_level = "low" # Create Harmony format prompt prompt = create_harmony_prompt(messages, reasoning_level) # Create streamer for proper streaming streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Prepare generation kwargs generation_kwargs = { "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "pad_token_id": tokenizer.eos_token_id, "streamer": streamer, "use_cache": True } # Tokenize input using the Harmony format inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Start generation in a separate thread thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs}) thread.start() # Stream the response and parse Harmony format current_channel = None current_content = "" thinking = "" final = "" for chunk in streamer: current_content += chunk # Parse Harmony format channels # Look for channel markers like <|channel|>analysis, <|channel|>commentary, <|channel|>final if "<|channel|>" in current_content: # Extract channel and content parts = current_content.split("<|channel|>") if len(parts) >= 2: channel_part = parts[1] if channel_part.startswith("analysis"): current_channel = "analysis" content_start = channel_part.find("<|message|>") if content_start != -1: content = channel_part[content_start + 10:] # length of "<|message|>" thinking += content elif channel_part.startswith("commentary"): current_channel = "commentary" content_start = channel_part.find("<|message|>") if content_start != -1: content = channel_part[content_start + 10:] thinking += content elif channel_part.startswith("final"): current_channel = "final" content_start = channel_part.find("<|message|>") if content_start != -1: content = channel_part[content_start + 10:] final += content # Clean up the content for display clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip() clean_final = final.strip() # Format for display if clean_thinking or clean_final: formatted = f"
Click to view Thinking Process\n\n{clean_thinking}\n\n
\n\n{clean_final}" yield formatted demo = gr.ChatInterface( fn=generate_response, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), gr.Textbox( label="System Prompt", value="You are a helpful assistant. Reasoning: medium", lines=4, placeholder="Change system prompt" ), gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) ], examples=[ [{"text": "Explain Newton laws clearly and concisely"}], [{"text": "Write a Python function to calculate the Fibonacci sequence"}], [{"text": "What are the benefits of open weight AI models"}], ], cache_examples=False, type="messages", description=""" # 🙋🏻‍♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo ! Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high. This version uses the proper Harmony format for better generation quality. """, fill_height=True, textbox=gr.Textbox( label="Query Input", placeholder="Type your prompt" ), stop_btn="Stop Generation", multimodal=False, theme=gr.themes.Soft() ) if __name__ == "__main__": demo.launch(share=True)