|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gradio as gr |
|
import torch |
|
|
|
title = "👋🏻Welcome to Tonic's EZ Chat🚀" |
|
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for anyother model on 🤗HuggingFace." |
|
examples = [["How are you?"]] |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
tokenizer.padding_side = 'left' |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gradio as gr |
|
import torch |
|
|
|
title = "👋🏻Welcome to Tonic's EZ Chat🚀" |
|
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord](https://discord.gg/fpEPNZGsbt) to build together." |
|
examples = [["How are you?"]] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
tokenizer.padding_side = 'left' |
|
|
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") |
|
|
|
def predict(input, history=[]): |
|
new_user_input_ids = tokenizer.encode(input, return_tensors="pt") |
|
|
|
bot_input_ids = torch.cat([torch.tensor(history), new_user_input_ids], dim=-1) if history else new_user_input_ids |
|
|
|
chat_history_ids = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id) |
|
|
|
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
|
|
return response |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
inputs="text", |
|
outputs="text", |
|
theme="ParityError/Anime", |
|
) |
|
|
|
iface.launch() |