import optimum import transformers from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM # from optimum.bettertransformer import BetterTransformer import torch import gradio as gr import json import os import shutil import requests title = "👋🏻Welcome to Tonic's 💫🌠Starling 7B" description = "You can use [💫🌠Starling 7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) or duplicate it for local use or on Hugging Face! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." examples = [ [ "The following dialogue is a conversation between Emmanuel Macron and Elon Musk:", # user_message "[Emmanuel Macron]: Hello Mr. Musk. Thank you for receiving me today.", # assistant_message 0.9, # temperature 450, # max_new_tokens 0.90, # top_p 1.9, # repetition_penalty ] ] model_name = "berkeley-nest/Starling-LM-7B-alpha" # base_model = "meta-llama/Llama-2-7b-chat-hf" device = "cuda" if torch.cuda.is_available() else "cpu" temperature=0.4 max_new_tokens=240 top_p=0.92 repetition_penalty=1.7 tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, load_in_4bit=True ) # model = BetterTransformer.transform(model) model.eval() class StarlingBot: def __init__(self, system_prompt="The following dialogue is a conversation"): self.system_prompt = system_prompt def predict(self, user_message, assistant_message, system_prompt, do_sample, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9): conversation = f" [INST] {self.system_prompt} [INST] {assistant_message if assistant_message else ''} [/INST] {user_message} " input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False) input_ids = input_ids.to(device) response = model.generate( input_ids=input_ids, use_cache=False, early_stopping=False, bos_token_id=model.config.bos_token_id, eos_token_id=model.config.eos_token_id, pad_token_id=model.config.eos_token_id, temperature=temperature, do_sample=True, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty ) response_text = tokenizer.decode(response[0], skip_special_tokens=True) return response_text starling_bot = StarlingBot() iface = gr.Interface( fn=starling_bot.predict, title=title, description=description, # examples=examples, inputs=[ gr.Textbox(label="🌟🤩User Message", type="text", lines=5), gr.Textbox(label="💫🌠Starling Assistant Message or Instructions ", lines=2), gr.Textbox(label="💫🌠Starling System Prompt or Instruction", lines=2), gr.Checkbox(label="Advanced", value=False), gr.Slider(label="Temperature", value=0.7, minimum=0.05, maximum=1.0, step=0.05), gr.Slider(label="Max new tokens", value=100, minimum=25, maximum=256, step=1), gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05), gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05) ], outputs="text", theme="ParityError/Anime" )