Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -7,15 +7,10 @@ import gradio as gr 
     | 
|
| 7 | 
         
             
            import sentencepiece
         
     | 
| 8 | 
         | 
| 9 | 
         
             
            title = "Welcome to Tonic's 🐋🐳Orca-2-13B (in 8bit)!"
         
     | 
| 10 | 
         
            -
            description = "You can use [🐋🐳microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TonicsOrca2?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Big thanks to the HuggingFace Organisation for the Community Grant."
         
     | 
| 11 | 
         | 
| 12 | 
         
            -
            # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
         
     | 
| 13 | 
         
             
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         
     | 
| 14 | 
         
             
            model_name = "microsoft/Orca-2-13b"
         
     | 
| 15 | 
         
            -
            # offload_folder = './model_weights'
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
            # if not os.path.exists(offload_folder):
         
     | 
| 18 | 
         
            -
            #     os.makedirs(offload_folder)
         
     | 
| 19 | 
         | 
| 20 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
         
     | 
| 21 | 
         
             
            model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
         
     | 
| 
         @@ -25,9 +20,26 @@ class OrcaChatBot: 
     | 
|
| 25 | 
         
             
                    self.model = model
         
     | 
| 26 | 
         
             
                    self.tokenizer = tokenizer
         
     | 
| 27 | 
         
             
                    self.system_message = system_message
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 28 | 
         | 
| 29 | 
         
             
                def predict(self, user_message, temperature=0.4, max_new_tokens=70, top_p=0.99, repetition_penalty=1.9):
         
     | 
| 30 | 
         
            -
                     
     | 
| 
         | 
|
| 31 | 
         
             
                    inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
         
     | 
| 32 | 
         
             
                    input_ids = inputs["input_ids"].to(self.model.device)
         
     | 
| 33 | 
         | 
| 
         @@ -38,13 +50,13 @@ class OrcaChatBot: 
     | 
|
| 38 | 
         
             
                        top_p=top_p,
         
     | 
| 39 | 
         
             
                        repetition_penalty=repetition_penalty,
         
     | 
| 40 | 
         
             
                        pad_token_id=self.tokenizer.eos_token_id,
         
     | 
| 41 | 
         
            -
                        do_sample=True 
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         | 
| 44 | 
         
             
                    response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
             
                    return response
         
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
             
            Orca_bot = OrcaChatBot(model, tokenizer)
         
     | 
| 49 | 
         | 
| 50 | 
         
             
            def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty):
         
     | 
| 
         @@ -58,7 +70,7 @@ iface = gr.Interface( 
     | 
|
| 58 | 
         
             
                inputs=[
         
     | 
| 59 | 
         
             
                    gr.Textbox(label="Your Message", type="text", lines=3),
         
     | 
| 60 | 
         
             
                    gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", type="text", lines=2),
         
     | 
| 61 | 
         
            -
                    gr.Slider(label="Max new tokens", value= 
     | 
| 62 | 
         
             
                    gr.Slider(label="Temperature", value=0.1, minimum=0.05, maximum=1.0, step=0.05),
         
     | 
| 63 | 
         
             
                    gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05),
         
     | 
| 64 | 
         
             
                    gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
         
     | 
| 
         | 
|
| 7 | 
         
             
            import sentencepiece
         
     | 
| 8 | 
         | 
| 9 | 
         
             
            title = "Welcome to Tonic's 🐋🐳Orca-2-13B (in 8bit)!"
         
     | 
| 10 | 
         
            +
            description = "You can use [🐋🐳microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TonicsOrca2?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together! Big thanks to the HuggingFace Organisation for the Community Grant."
         
     | 
| 11 | 
         | 
| 
         | 
|
| 12 | 
         
             
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         
     | 
| 13 | 
         
             
            model_name = "microsoft/Orca-2-13b"
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 14 | 
         | 
| 15 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
         
     | 
| 16 | 
         
             
            model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
         
     | 
| 
         | 
|
| 20 | 
         
             
                    self.model = model
         
     | 
| 21 | 
         
             
                    self.tokenizer = tokenizer
         
     | 
| 22 | 
         
             
                    self.system_message = system_message
         
     | 
| 23 | 
         
            +
                    self.conversation_history = []
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                def update_conversation_history(self, user_message, assistant_message):
         
     | 
| 26 | 
         
            +
                    self.conversation_history.append(("user", user_message))
         
     | 
| 27 | 
         
            +
                    self.conversation_history.append(("assistant", assistant_message))
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                
         
     | 
| 30 | 
         
            +
                def format_prompt(self):
         
     | 
| 31 | 
         
            +
                    prompt = f"<|im_start|>assistant\n{self.system_message}<|im_end|>\n"
         
     | 
| 32 | 
         
            +
                    for role, message in self.conversation_history:
         
     | 
| 33 | 
         
            +
                        if message.strip():
         
     | 
| 34 | 
         
            +
                            prompt += f"<|im_start|>{role}\n{message}<|im_end|>\n"
         
     | 
| 35 | 
         
            +
            #               if role == "assistant":
         
     | 
| 36 | 
         
            +
            #                    prompt += f"<|im_end|>\n"
         
     | 
| 37 | 
         
            +
                    prompt += "<|im_start|> assistant\n"
         
     | 
| 38 | 
         
            +
                    return prompt
         
     | 
| 39 | 
         | 
| 40 | 
         
             
                def predict(self, user_message, temperature=0.4, max_new_tokens=70, top_p=0.99, repetition_penalty=1.9):
         
     | 
| 41 | 
         
            +
                    self.update_conversation_history(user_message, "")
         
     | 
| 42 | 
         
            +
                    prompt = self.format_prompt()
         
     | 
| 43 | 
         
             
                    inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
         
     | 
| 44 | 
         
             
                    input_ids = inputs["input_ids"].to(self.model.device)
         
     | 
| 45 | 
         | 
| 
         | 
|
| 50 | 
         
             
                        top_p=top_p,
         
     | 
| 51 | 
         
             
                        repetition_penalty=repetition_penalty,
         
     | 
| 52 | 
         
             
                        pad_token_id=self.tokenizer.eos_token_id,
         
     | 
| 53 | 
         
            +
                        do_sample=True
         
     | 
| 54 | 
         
            +
                )
         
     | 
| 55 | 
         | 
| 56 | 
         
             
                    response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
         
     | 
| 57 | 
         
            +
                    self.update_conversation_history("", response)
         
     | 
| 58 | 
         
             
                    return response
         
     | 
| 59 | 
         
            +
                    
         
     | 
| 60 | 
         
             
            Orca_bot = OrcaChatBot(model, tokenizer)
         
     | 
| 61 | 
         | 
| 62 | 
         
             
            def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty):
         
     | 
| 
         | 
|
| 70 | 
         
             
                inputs=[
         
     | 
| 71 | 
         
             
                    gr.Textbox(label="Your Message", type="text", lines=3),
         
     | 
| 72 | 
         
             
                    gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", type="text", lines=2),
         
     | 
| 73 | 
         
            +
                    gr.Slider(label="Max new tokens", value=420, minimum=25, maximum=2056, step=1),
         
     | 
| 74 | 
         
             
                    gr.Slider(label="Temperature", value=0.1, minimum=0.05, maximum=1.0, step=0.05),
         
     | 
| 75 | 
         
             
                    gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05),
         
     | 
| 76 | 
         
             
                    gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
         
     |