Spaces:
Paused
Paused
Create pipeline_calls.py
Browse files- pipeline_calls.py +552 -0
pipeline_calls.py
ADDED
|
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Google LLC
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from __future__ import annotations
|
| 17 |
+
from typing import Any
|
| 18 |
+
import torch
|
| 19 |
+
import numpy as np
|
| 20 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
| 21 |
+
from diffusers.image_processor import PipelineImageInput
|
| 22 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
| 23 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 24 |
+
from diffusers import StableDiffusionPanoramaPipeline
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import copy
|
| 27 |
+
|
| 28 |
+
T = torch.Tensor
|
| 29 |
+
TN = T | None
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_depth_map(image: Image, feature_processor: DPTImageProcessor, depth_estimator: DPTForDepthEstimation) -> Image:
|
| 33 |
+
image = feature_processor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
| 34 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
| 35 |
+
depth_map = depth_estimator(image).predicted_depth
|
| 36 |
+
|
| 37 |
+
depth_map = torch.nn.functional.interpolate(
|
| 38 |
+
depth_map.unsqueeze(1),
|
| 39 |
+
size=(1024, 1024),
|
| 40 |
+
mode="bicubic",
|
| 41 |
+
align_corners=False,
|
| 42 |
+
)
|
| 43 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 44 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 45 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 46 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
| 47 |
+
|
| 48 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 49 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
| 50 |
+
return image
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def concat_zero_control(control_reisduel: T) -> T:
|
| 54 |
+
b = control_reisduel.shape[0] // 2
|
| 55 |
+
zerso_reisduel = torch.zeros_like(control_reisduel[0:1])
|
| 56 |
+
return torch.cat((zerso_reisduel, control_reisduel[:b], zerso_reisduel, control_reisduel[b::]))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@torch.no_grad()
|
| 60 |
+
def controlnet_call(
|
| 61 |
+
pipeline: StableDiffusionXLControlNetPipeline,
|
| 62 |
+
prompt: str | list[str] = None,
|
| 63 |
+
prompt_2: str | list[str] | None = None,
|
| 64 |
+
image: PipelineImageInput = None,
|
| 65 |
+
height: int | None = None,
|
| 66 |
+
width: int | None = None,
|
| 67 |
+
num_inference_steps: int = 50,
|
| 68 |
+
guidance_scale: float = 5.0,
|
| 69 |
+
negative_prompt: str | list[str] | None = None,
|
| 70 |
+
negative_prompt_2: str | list[str] | None = None,
|
| 71 |
+
num_images_per_prompt: int = 1,
|
| 72 |
+
eta: float = 0.0,
|
| 73 |
+
generator: torch.Generator | None = None,
|
| 74 |
+
latents: TN = None,
|
| 75 |
+
prompt_embeds: TN = None,
|
| 76 |
+
negative_prompt_embeds: TN = None,
|
| 77 |
+
pooled_prompt_embeds: TN = None,
|
| 78 |
+
negative_pooled_prompt_embeds: TN = None,
|
| 79 |
+
cross_attention_kwargs: dict[str, Any] | None = None,
|
| 80 |
+
controlnet_conditioning_scale: float | list[float] = 1.0,
|
| 81 |
+
control_guidance_start: float | list[float] = 0.0,
|
| 82 |
+
control_guidance_end: float | list[float] = 1.0,
|
| 83 |
+
original_size: tuple[int, int] = None,
|
| 84 |
+
crops_coords_top_left: tuple[int, int] = (0, 0),
|
| 85 |
+
target_size: tuple[int, int] | None = None,
|
| 86 |
+
negative_original_size: tuple[int, int] | None = None,
|
| 87 |
+
negative_crops_coords_top_left: tuple[int, int] = (0, 0),
|
| 88 |
+
negative_target_size:tuple[int, int] | None = None,
|
| 89 |
+
clip_skip: int | None = None,
|
| 90 |
+
) -> list[Image]:
|
| 91 |
+
controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet
|
| 92 |
+
|
| 93 |
+
# align format for control guidance
|
| 94 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
| 95 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
| 96 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
| 97 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
| 98 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
| 99 |
+
mult = 1
|
| 100 |
+
control_guidance_start, control_guidance_end = (
|
| 101 |
+
mult * [control_guidance_start],
|
| 102 |
+
mult * [control_guidance_end],
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# 1. Check inputs. Raise error if not correct
|
| 106 |
+
pipeline.check_inputs(
|
| 107 |
+
prompt,
|
| 108 |
+
prompt_2,
|
| 109 |
+
image,
|
| 110 |
+
1,
|
| 111 |
+
negative_prompt,
|
| 112 |
+
negative_prompt_2,
|
| 113 |
+
prompt_embeds,
|
| 114 |
+
negative_prompt_embeds,
|
| 115 |
+
pooled_prompt_embeds,
|
| 116 |
+
negative_pooled_prompt_embeds,
|
| 117 |
+
controlnet_conditioning_scale,
|
| 118 |
+
control_guidance_start,
|
| 119 |
+
control_guidance_end,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
pipeline._guidance_scale = guidance_scale
|
| 123 |
+
|
| 124 |
+
# 2. Define call parameters
|
| 125 |
+
if prompt is not None and isinstance(prompt, str):
|
| 126 |
+
batch_size = 1
|
| 127 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 128 |
+
batch_size = len(prompt)
|
| 129 |
+
else:
|
| 130 |
+
batch_size = prompt_embeds.shape[0]
|
| 131 |
+
|
| 132 |
+
device = pipeline._execution_device
|
| 133 |
+
|
| 134 |
+
# 3. Encode input prompt
|
| 135 |
+
text_encoder_lora_scale = (
|
| 136 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 137 |
+
)
|
| 138 |
+
(
|
| 139 |
+
prompt_embeds,
|
| 140 |
+
negative_prompt_embeds,
|
| 141 |
+
pooled_prompt_embeds,
|
| 142 |
+
negative_pooled_prompt_embeds,
|
| 143 |
+
) = pipeline.encode_prompt(
|
| 144 |
+
prompt,
|
| 145 |
+
prompt_2,
|
| 146 |
+
device,
|
| 147 |
+
1,
|
| 148 |
+
True,
|
| 149 |
+
negative_prompt,
|
| 150 |
+
negative_prompt_2,
|
| 151 |
+
prompt_embeds=prompt_embeds,
|
| 152 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 153 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 154 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 155 |
+
lora_scale=text_encoder_lora_scale,
|
| 156 |
+
clip_skip=clip_skip,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# 4. Prepare image
|
| 160 |
+
if isinstance(controlnet, ControlNetModel):
|
| 161 |
+
image = pipeline.prepare_image(
|
| 162 |
+
image=image,
|
| 163 |
+
width=width,
|
| 164 |
+
height=height,
|
| 165 |
+
batch_size=1,
|
| 166 |
+
num_images_per_prompt=1,
|
| 167 |
+
device=device,
|
| 168 |
+
dtype=controlnet.dtype,
|
| 169 |
+
do_classifier_free_guidance=True,
|
| 170 |
+
guess_mode=False,
|
| 171 |
+
)
|
| 172 |
+
height, width = image.shape[-2:]
|
| 173 |
+
image = torch.stack([image[0]] * num_images_per_prompt + [image[1]] * num_images_per_prompt)
|
| 174 |
+
else:
|
| 175 |
+
assert False
|
| 176 |
+
# 5. Prepare timesteps
|
| 177 |
+
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 178 |
+
timesteps = pipeline.scheduler.timesteps
|
| 179 |
+
|
| 180 |
+
# 6. Prepare latent variables
|
| 181 |
+
num_channels_latents = pipeline.unet.config.in_channels
|
| 182 |
+
latents = pipeline.prepare_latents(
|
| 183 |
+
1 + num_images_per_prompt,
|
| 184 |
+
num_channels_latents,
|
| 185 |
+
height,
|
| 186 |
+
width,
|
| 187 |
+
prompt_embeds.dtype,
|
| 188 |
+
device,
|
| 189 |
+
generator,
|
| 190 |
+
latents,
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
| 194 |
+
timestep_cond = None
|
| 195 |
+
|
| 196 |
+
# 7. Prepare extra step kwargs.
|
| 197 |
+
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
|
| 198 |
+
|
| 199 |
+
# 7.1 Create tensor stating which controlnets to keep
|
| 200 |
+
controlnet_keep = []
|
| 201 |
+
for i in range(len(timesteps)):
|
| 202 |
+
keeps = [
|
| 203 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
| 204 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
| 205 |
+
]
|
| 206 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
| 207 |
+
|
| 208 |
+
# 7.2 Prepare added time ids & embeddings
|
| 209 |
+
if isinstance(image, list):
|
| 210 |
+
original_size = original_size or image[0].shape[-2:]
|
| 211 |
+
else:
|
| 212 |
+
original_size = original_size or image.shape[-2:]
|
| 213 |
+
target_size = target_size or (height, width)
|
| 214 |
+
|
| 215 |
+
add_text_embeds = pooled_prompt_embeds
|
| 216 |
+
if pipeline.text_encoder_2 is None:
|
| 217 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
| 218 |
+
else:
|
| 219 |
+
text_encoder_projection_dim = pipeline.text_encoder_2.config.projection_dim
|
| 220 |
+
|
| 221 |
+
add_time_ids = pipeline._get_add_time_ids(
|
| 222 |
+
original_size,
|
| 223 |
+
crops_coords_top_left,
|
| 224 |
+
target_size,
|
| 225 |
+
dtype=prompt_embeds.dtype,
|
| 226 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
if negative_original_size is not None and negative_target_size is not None:
|
| 230 |
+
negative_add_time_ids = pipeline._get_add_time_ids(
|
| 231 |
+
negative_original_size,
|
| 232 |
+
negative_crops_coords_top_left,
|
| 233 |
+
negative_target_size,
|
| 234 |
+
dtype=prompt_embeds.dtype,
|
| 235 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 236 |
+
)
|
| 237 |
+
else:
|
| 238 |
+
negative_add_time_ids = add_time_ids
|
| 239 |
+
|
| 240 |
+
prompt_embeds = torch.stack([prompt_embeds[0]] + [prompt_embeds[1]] * num_images_per_prompt)
|
| 241 |
+
negative_prompt_embeds = torch.stack([negative_prompt_embeds[0]] + [negative_prompt_embeds[1]] * num_images_per_prompt)
|
| 242 |
+
negative_pooled_prompt_embeds = torch.stack([negative_pooled_prompt_embeds[0]] + [negative_pooled_prompt_embeds[1]] * num_images_per_prompt)
|
| 243 |
+
add_text_embeds = torch.stack([add_text_embeds[0]] + [add_text_embeds[1]] * num_images_per_prompt)
|
| 244 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 245 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 246 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
| 247 |
+
|
| 248 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 249 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 250 |
+
add_time_ids = add_time_ids.to(device).repeat(1 + num_images_per_prompt, 1)
|
| 251 |
+
batch_size = num_images_per_prompt + 1
|
| 252 |
+
# 8. Denoising loop
|
| 253 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
|
| 254 |
+
is_unet_compiled = is_compiled_module(pipeline.unet)
|
| 255 |
+
is_controlnet_compiled = is_compiled_module(pipeline.controlnet)
|
| 256 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
| 257 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 258 |
+
controlnet_prompt_embeds = torch.cat((prompt_embeds[1:batch_size], prompt_embeds[1:batch_size]))
|
| 259 |
+
controlnet_added_cond_kwargs = {key: torch.cat((item[1:batch_size,], item[1:batch_size])) for key, item in added_cond_kwargs.items()}
|
| 260 |
+
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
|
| 261 |
+
for i, t in enumerate(timesteps):
|
| 262 |
+
# Relevant thread:
|
| 263 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
| 264 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
| 265 |
+
torch._inductor.cudagraph_mark_step_begin()
|
| 266 |
+
# expand the latents if we are doing classifier free guidance
|
| 267 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 268 |
+
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
|
| 269 |
+
|
| 270 |
+
# controlnet(s) inference
|
| 271 |
+
control_model_input = torch.cat((latent_model_input[1:batch_size,], latent_model_input[batch_size+1:]))
|
| 272 |
+
|
| 273 |
+
if isinstance(controlnet_keep[i], list):
|
| 274 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
| 275 |
+
else:
|
| 276 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
| 277 |
+
if isinstance(controlnet_cond_scale, list):
|
| 278 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
| 279 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
| 280 |
+
if cond_scale > 0:
|
| 281 |
+
down_block_res_samples, mid_block_res_sample = pipeline.controlnet(
|
| 282 |
+
control_model_input,
|
| 283 |
+
t,
|
| 284 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
| 285 |
+
controlnet_cond=image,
|
| 286 |
+
conditioning_scale=cond_scale,
|
| 287 |
+
guess_mode=False,
|
| 288 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
| 289 |
+
return_dict=False,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
mid_block_res_sample = concat_zero_control(mid_block_res_sample)
|
| 293 |
+
down_block_res_samples = [concat_zero_control(down_block_res_sample) for down_block_res_sample in down_block_res_samples]
|
| 294 |
+
else:
|
| 295 |
+
mid_block_res_sample = down_block_res_samples = None
|
| 296 |
+
# predict the noise residual
|
| 297 |
+
noise_pred = pipeline.unet(
|
| 298 |
+
latent_model_input,
|
| 299 |
+
t,
|
| 300 |
+
encoder_hidden_states=prompt_embeds,
|
| 301 |
+
timestep_cond=timestep_cond,
|
| 302 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 303 |
+
down_block_additional_residuals=down_block_res_samples,
|
| 304 |
+
mid_block_additional_residual=mid_block_res_sample,
|
| 305 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 306 |
+
return_dict=False,
|
| 307 |
+
)[0]
|
| 308 |
+
|
| 309 |
+
# perform guidance
|
| 310 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 311 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 312 |
+
|
| 313 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 314 |
+
latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 315 |
+
|
| 316 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
|
| 317 |
+
progress_bar.update()
|
| 318 |
+
|
| 319 |
+
# manually for max memory savings
|
| 320 |
+
if pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast:
|
| 321 |
+
pipeline.upcast_vae()
|
| 322 |
+
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
|
| 323 |
+
|
| 324 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 325 |
+
needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast
|
| 326 |
+
|
| 327 |
+
if needs_upcasting:
|
| 328 |
+
pipeline.upcast_vae()
|
| 329 |
+
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
|
| 330 |
+
|
| 331 |
+
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
| 332 |
+
|
| 333 |
+
# cast back to fp16 if needed
|
| 334 |
+
if needs_upcasting:
|
| 335 |
+
pipeline.vae.to(dtype=torch.float16)
|
| 336 |
+
|
| 337 |
+
if pipeline.watermark is not None:
|
| 338 |
+
image = pipeline.watermark.apply_watermark(image)
|
| 339 |
+
|
| 340 |
+
image = pipeline.image_processor.postprocess(image, output_type='pil')
|
| 341 |
+
|
| 342 |
+
# Offload all models
|
| 343 |
+
pipeline.maybe_free_model_hooks()
|
| 344 |
+
return image
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
@torch.no_grad()
|
| 348 |
+
def panorama_call(
|
| 349 |
+
pipeline: StableDiffusionPanoramaPipeline,
|
| 350 |
+
prompt: list[str],
|
| 351 |
+
height: int | None = 512,
|
| 352 |
+
width: int | None = 2048,
|
| 353 |
+
num_inference_steps: int = 50,
|
| 354 |
+
guidance_scale: float = 7.5,
|
| 355 |
+
view_batch_size: int = 1,
|
| 356 |
+
negative_prompt: str | list[str] | None = None,
|
| 357 |
+
num_images_per_prompt: int | None = 1,
|
| 358 |
+
eta: float = 0.0,
|
| 359 |
+
generator: torch.Generator | None = None,
|
| 360 |
+
reference_latent: TN = None,
|
| 361 |
+
latents: TN = None,
|
| 362 |
+
prompt_embeds: TN = None,
|
| 363 |
+
negative_prompt_embeds: TN = None,
|
| 364 |
+
cross_attention_kwargs: dict[str, Any] | None = None,
|
| 365 |
+
circular_padding: bool = False,
|
| 366 |
+
clip_skip: int | None = None,
|
| 367 |
+
stride=8
|
| 368 |
+
) -> list[Image]:
|
| 369 |
+
# 0. Default height and width to unet
|
| 370 |
+
height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
| 371 |
+
width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
| 372 |
+
|
| 373 |
+
# 1. Check inputs. Raise error if not correct
|
| 374 |
+
pipeline.check_inputs(
|
| 375 |
+
prompt, height, width, 1, negative_prompt, prompt_embeds, negative_prompt_embeds
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
device = pipeline._execution_device
|
| 379 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 380 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 381 |
+
# corresponds to doing no classifier free guidance.
|
| 382 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 383 |
+
|
| 384 |
+
# 3. Encode input prompt
|
| 385 |
+
text_encoder_lora_scale = (
|
| 386 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 387 |
+
)
|
| 388 |
+
prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt(
|
| 389 |
+
prompt,
|
| 390 |
+
device,
|
| 391 |
+
num_images_per_prompt,
|
| 392 |
+
do_classifier_free_guidance,
|
| 393 |
+
negative_prompt,
|
| 394 |
+
prompt_embeds=prompt_embeds,
|
| 395 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 396 |
+
lora_scale=text_encoder_lora_scale,
|
| 397 |
+
clip_skip=clip_skip,
|
| 398 |
+
)
|
| 399 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 400 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 401 |
+
# to avoid doing two forward passes
|
| 402 |
+
|
| 403 |
+
# 4. Prepare timesteps
|
| 404 |
+
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 405 |
+
timesteps = pipeline.scheduler.timesteps
|
| 406 |
+
|
| 407 |
+
# 5. Prepare latent variables
|
| 408 |
+
num_channels_latents = pipeline.unet.config.in_channels
|
| 409 |
+
latents = pipeline.prepare_latents(
|
| 410 |
+
1,
|
| 411 |
+
num_channels_latents,
|
| 412 |
+
height,
|
| 413 |
+
width,
|
| 414 |
+
prompt_embeds.dtype,
|
| 415 |
+
device,
|
| 416 |
+
generator,
|
| 417 |
+
latents,
|
| 418 |
+
)
|
| 419 |
+
if reference_latent is None:
|
| 420 |
+
reference_latent = torch.randn(1, 4, pipeline.unet.config.sample_size, pipeline.unet.config.sample_size,
|
| 421 |
+
generator=generator)
|
| 422 |
+
reference_latent = reference_latent.to(device=device, dtype=pipeline.unet.dtype)
|
| 423 |
+
# 6. Define panorama grid and initialize views for synthesis.
|
| 424 |
+
# prepare batch grid
|
| 425 |
+
views = pipeline.get_views(height, width, circular_padding=circular_padding, stride=stride)
|
| 426 |
+
views_batch = [views[i: i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
| 427 |
+
views_scheduler_status = [copy.deepcopy(pipeline.scheduler.__dict__)] * len(views_batch)
|
| 428 |
+
count = torch.zeros_like(latents)
|
| 429 |
+
value = torch.zeros_like(latents)
|
| 430 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 431 |
+
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
|
| 432 |
+
|
| 433 |
+
# 8. Denoising loop
|
| 434 |
+
# Each denoising step also includes refinement of the latents with respect to the
|
| 435 |
+
# views.
|
| 436 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
|
| 437 |
+
|
| 438 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds[:1],
|
| 439 |
+
*[negative_prompt_embeds[1:]] * view_batch_size]
|
| 440 |
+
)
|
| 441 |
+
prompt_embeds = torch.cat([prompt_embeds[:1],
|
| 442 |
+
*[prompt_embeds[1:]] * view_batch_size]
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
|
| 446 |
+
for i, t in enumerate(timesteps):
|
| 447 |
+
count.zero_()
|
| 448 |
+
value.zero_()
|
| 449 |
+
|
| 450 |
+
# generate views
|
| 451 |
+
# Here, we iterate through different spatial crops of the latents and denoise them. These
|
| 452 |
+
# denoised (latent) crops are then averaged to produce the final latent
|
| 453 |
+
# for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
|
| 454 |
+
# MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
|
| 455 |
+
# Batch views denoise
|
| 456 |
+
for j, batch_view in enumerate(views_batch):
|
| 457 |
+
vb_size = len(batch_view)
|
| 458 |
+
# get the latents corresponding to the current view coordinates
|
| 459 |
+
if circular_padding:
|
| 460 |
+
latents_for_view = []
|
| 461 |
+
for h_start, h_end, w_start, w_end in batch_view:
|
| 462 |
+
if w_end > latents.shape[3]:
|
| 463 |
+
# Add circular horizontal padding
|
| 464 |
+
latent_view = torch.cat(
|
| 465 |
+
(
|
| 466 |
+
latents[:, :, h_start:h_end, w_start:],
|
| 467 |
+
latents[:, :, h_start:h_end, : w_end - latents.shape[3]],
|
| 468 |
+
),
|
| 469 |
+
dim=-1,
|
| 470 |
+
)
|
| 471 |
+
else:
|
| 472 |
+
latent_view = latents[:, :, h_start:h_end, w_start:w_end]
|
| 473 |
+
latents_for_view.append(latent_view)
|
| 474 |
+
latents_for_view = torch.cat(latents_for_view)
|
| 475 |
+
else:
|
| 476 |
+
latents_for_view = torch.cat(
|
| 477 |
+
[
|
| 478 |
+
latents[:, :, h_start:h_end, w_start:w_end]
|
| 479 |
+
for h_start, h_end, w_start, w_end in batch_view
|
| 480 |
+
]
|
| 481 |
+
)
|
| 482 |
+
# rematch block's scheduler status
|
| 483 |
+
pipeline.scheduler.__dict__.update(views_scheduler_status[j])
|
| 484 |
+
|
| 485 |
+
# expand the latents if we are doing classifier free guidance
|
| 486 |
+
latent_reference_plus_view = torch.cat((reference_latent, latents_for_view))
|
| 487 |
+
latent_model_input = latent_reference_plus_view.repeat(2, 1, 1, 1)
|
| 488 |
+
prompt_embeds_input = torch.cat([negative_prompt_embeds[: 1 + vb_size],
|
| 489 |
+
prompt_embeds[: 1 + vb_size]]
|
| 490 |
+
)
|
| 491 |
+
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
|
| 492 |
+
# predict the noise residual
|
| 493 |
+
# return
|
| 494 |
+
noise_pred = pipeline.unet(
|
| 495 |
+
latent_model_input,
|
| 496 |
+
t,
|
| 497 |
+
encoder_hidden_states=prompt_embeds_input,
|
| 498 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 499 |
+
).sample
|
| 500 |
+
|
| 501 |
+
# perform guidance
|
| 502 |
+
|
| 503 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 504 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 505 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 506 |
+
latent_reference_plus_view = pipeline.scheduler.step(
|
| 507 |
+
noise_pred, t, latent_reference_plus_view, **extra_step_kwargs
|
| 508 |
+
).prev_sample
|
| 509 |
+
if j == len(views_batch) - 1:
|
| 510 |
+
reference_latent = latent_reference_plus_view[:1]
|
| 511 |
+
latents_denoised_batch = latent_reference_plus_view[1:]
|
| 512 |
+
# save views scheduler status after sample
|
| 513 |
+
views_scheduler_status[j] = copy.deepcopy(pipeline.scheduler.__dict__)
|
| 514 |
+
|
| 515 |
+
# extract value from batch
|
| 516 |
+
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
|
| 517 |
+
latents_denoised_batch.chunk(vb_size), batch_view
|
| 518 |
+
):
|
| 519 |
+
if circular_padding and w_end > latents.shape[3]:
|
| 520 |
+
# Case for circular padding
|
| 521 |
+
value[:, :, h_start:h_end, w_start:] += latents_view_denoised[
|
| 522 |
+
:, :, h_start:h_end, : latents.shape[3] - w_start
|
| 523 |
+
]
|
| 524 |
+
value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[
|
| 525 |
+
:, :, h_start:h_end,
|
| 526 |
+
latents.shape[3] - w_start:
|
| 527 |
+
]
|
| 528 |
+
count[:, :, h_start:h_end, w_start:] += 1
|
| 529 |
+
count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1
|
| 530 |
+
else:
|
| 531 |
+
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
|
| 532 |
+
count[:, :, h_start:h_end, w_start:w_end] += 1
|
| 533 |
+
|
| 534 |
+
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
|
| 535 |
+
latents = torch.where(count > 0, value / count, value)
|
| 536 |
+
|
| 537 |
+
# call the callback, if provided
|
| 538 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
|
| 539 |
+
progress_bar.update()
|
| 540 |
+
|
| 541 |
+
if circular_padding:
|
| 542 |
+
image = pipeline.decode_latents_with_padding(latents)
|
| 543 |
+
else:
|
| 544 |
+
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
| 545 |
+
reference_image = pipeline.vae.decode(reference_latent / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
| 546 |
+
# image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 547 |
+
# reference_image, _ = pipeline.run_safety_checker(reference_image, device, prompt_embeds.dtype)
|
| 548 |
+
|
| 549 |
+
image = pipeline.image_processor.postprocess(image, output_type='pil', do_denormalize=[True])
|
| 550 |
+
reference_image = pipeline.image_processor.postprocess(reference_image, output_type='pil', do_denormalize=[True])
|
| 551 |
+
pipeline.maybe_free_model_hooks()
|
| 552 |
+
return reference_image + image
|