Tournesol-Saturday commited on
Commit
043ed63
·
verified ·
1 Parent(s): a45c14a

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -0
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import h5py
4
+ import numpy as np
5
+ import gradio as gr
6
+ import plotly.graph_objects as go
7
+ from railnet_model import RailNetSystem
8
+
9
+ os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
10
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
11
+
12
+ # model = RailNetSystem.from_pretrained(".").cuda()
13
+
14
+ model = RailNetSystem.from_pretrained("Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image").cuda()
15
+
16
+ model.load_weights(from_hub=True, repo_id="Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image")
17
+
18
+ def wait_for_stable_file(file_path, timeout=5, check_interval=0.2):
19
+ start_time = time.time()
20
+ last_size = -1
21
+ while time.time() - start_time < timeout:
22
+ current_size = os.path.getsize(file_path)
23
+ if current_size == last_size:
24
+ return True
25
+ last_size = current_size
26
+ time.sleep(check_interval)
27
+ return False
28
+
29
+ def process_cbct_file(h5_file, save_dir="./output"):
30
+ if not wait_for_stable_file(h5_file.name):
31
+ raise RuntimeError("File upload has not been completed or is unstable, please try again.")
32
+
33
+ try:
34
+ with h5py.File(h5_file.name, "r") as f:
35
+ if "image" not in f or "label" not in f:
36
+ raise KeyError("The file is missing ‘image’ or ‘label’ value")
37
+ image = f["image"][:]
38
+ label = f["label"][:]
39
+ except Exception as e:
40
+ raise RuntimeError(f"Failed to read the .h5 file: {str(e)}")
41
+
42
+ name = os.path.basename(h5_file.name).replace(".h5", "")
43
+ pred, dice, jc, hd, asd = model(image, label, save_dir, name)
44
+ return pred, f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}"
45
+
46
+ def render_plotly_volume(pred, x_eye=1.25, y_eye=1.25, z_eye=1.25):
47
+ downsample_factor = 2
48
+ pred_ds = pred[::downsample_factor, ::downsample_factor, ::downsample_factor]
49
+
50
+ fig = go.Figure(data=go.Volume(
51
+ x=np.repeat(np.arange(pred_ds.shape[0]), pred_ds.shape[1] * pred_ds.shape[2]),
52
+ y=np.tile(np.repeat(np.arange(pred_ds.shape[1]), pred_ds.shape[2]), pred_ds.shape[0]),
53
+ z=np.tile(np.arange(pred_ds.shape[2]), pred_ds.shape[0] * pred_ds.shape[1]),
54
+ value=pred_ds.flatten(),
55
+ isomin=0.5,
56
+ isomax=1.0,
57
+ opacity=0.1,
58
+ surface_count=1,
59
+ colorscale=[[0, 'rgb(255, 0, 0)'], [1, 'rgb(255, 0, 0)']],
60
+ showscale=False
61
+ ))
62
+
63
+ fig.update_layout(
64
+ scene=dict(
65
+ xaxis=dict(visible=False),
66
+ yaxis=dict(visible=False),
67
+ zaxis=dict(visible=False),
68
+ camera=dict(eye=dict(x=x_eye, y=y_eye, z=z_eye))
69
+ ),
70
+ margin=dict(l=0, r=0, b=0, t=0)
71
+ )
72
+ return fig
73
+
74
+ def clear_all():
75
+ return None, "", None
76
+
77
+ with gr.Blocks() as demo:
78
+ gr.HTML("<div style='text-align: center; font-size: 22px; font-weight: bold;'>🦷 Demo of RailNet: A CBCT Tooth Segmentation System</div>")
79
+ gr.HTML("<div style='text-align: center; font-size: 15px'>✅ Steps: Upload a CBCT example file (.h5) → Automatic inference and metrics display → View 3D segmentation result (Mouse drag and scroll wheel zooming)</div>")
80
+
81
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📂 Step 1: Upload the .h5 example file containing both ‘image’ and ‘label’ values</div>")
82
+ file_input = gr.File()
83
+ with gr.Row():
84
+ clear_btn = gr.Button("清除", variant="secondary")
85
+ submit_btn = gr.Button("提交", variant="primary")
86
+
87
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📊 Step 2: Metrics (Dice, Jaccard, 95HD, ASD)</div>")
88
+ result_text = gr.Textbox()
89
+ hidden_pred = gr.State(value=None)
90
+
91
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>👁️ Step 3: 3D Visualisation</div>")
92
+ plot_output = gr.Plot()
93
+
94
+ def handle_upload(h5_file):
95
+ pred, metrics = process_cbct_file(h5_file)
96
+ fig = render_plotly_volume(pred)
97
+ return metrics, pred, fig
98
+
99
+ submit_btn.click(
100
+ fn=handle_upload,
101
+ inputs=[file_input],
102
+ outputs=[result_text, hidden_pred, plot_output]
103
+ )
104
+
105
+ def update_view(pred, x_eye, y_eye, z_eye):
106
+ if pred is None:
107
+ return gr.update()
108
+ return render_plotly_volume(pred, x_eye, y_eye, z_eye)
109
+
110
+ clear_btn.click(
111
+ fn=clear_all,
112
+ inputs=[],
113
+ outputs=[file_input, result_text, plot_output]
114
+ )
115
+
116
+ demo.launch()
117
+