Delete railnet_model.py
Browse files- railnet_model.py +0 -975
railnet_model.py
DELETED
@@ -1,975 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
3 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from huggingface_hub import PyTorchModelHubMixin
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import nibabel as nib
|
12 |
-
from skimage import morphology
|
13 |
-
|
14 |
-
import math
|
15 |
-
from scipy import ndimage
|
16 |
-
from medpy import metric
|
17 |
-
|
18 |
-
from huggingface_hub import hf_hub_download
|
19 |
-
|
20 |
-
|
21 |
-
class ConvBlock(nn.Module):
|
22 |
-
def __init__(self, n_stages, n_filters_in, n_filters_out, normalization='none'):
|
23 |
-
super(ConvBlock, self).__init__()
|
24 |
-
|
25 |
-
ops = []
|
26 |
-
for i in range(n_stages):
|
27 |
-
if i == 0:
|
28 |
-
input_channel = n_filters_in
|
29 |
-
else:
|
30 |
-
input_channel = n_filters_out
|
31 |
-
|
32 |
-
ops.append(nn.Conv3d(input_channel, n_filters_out, 3, padding=1))
|
33 |
-
if normalization == 'batchnorm':
|
34 |
-
ops.append(nn.BatchNorm3d(n_filters_out))
|
35 |
-
elif normalization == 'groupnorm':
|
36 |
-
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
37 |
-
elif normalization == 'instancenorm':
|
38 |
-
ops.append(nn.InstanceNorm3d(n_filters_out))
|
39 |
-
elif normalization != 'none':
|
40 |
-
assert False
|
41 |
-
ops.append(nn.ReLU(inplace=True))
|
42 |
-
|
43 |
-
self.conv = nn.Sequential(*ops)
|
44 |
-
|
45 |
-
def forward(self, x):
|
46 |
-
x = self.conv(x)
|
47 |
-
return x
|
48 |
-
|
49 |
-
|
50 |
-
class DownsamplingConvBlock(nn.Module):
|
51 |
-
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
52 |
-
super(DownsamplingConvBlock, self).__init__()
|
53 |
-
|
54 |
-
ops = []
|
55 |
-
if normalization != 'none':
|
56 |
-
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
57 |
-
if normalization == 'batchnorm':
|
58 |
-
ops.append(nn.BatchNorm3d(n_filters_out))
|
59 |
-
elif normalization == 'groupnorm':
|
60 |
-
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
61 |
-
elif normalization == 'instancenorm':
|
62 |
-
ops.append(nn.InstanceNorm3d(n_filters_out))
|
63 |
-
else:
|
64 |
-
assert False
|
65 |
-
else:
|
66 |
-
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
67 |
-
|
68 |
-
ops.append(nn.ReLU(inplace=True))
|
69 |
-
|
70 |
-
self.conv = nn.Sequential(*ops)
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
x = self.conv(x)
|
74 |
-
return x
|
75 |
-
|
76 |
-
|
77 |
-
class UpsamplingDeconvBlock(nn.Module):
|
78 |
-
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
79 |
-
super(UpsamplingDeconvBlock, self).__init__()
|
80 |
-
|
81 |
-
ops = []
|
82 |
-
if normalization != 'none':
|
83 |
-
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
84 |
-
if normalization == 'batchnorm':
|
85 |
-
ops.append(nn.BatchNorm3d(n_filters_out))
|
86 |
-
elif normalization == 'groupnorm':
|
87 |
-
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
88 |
-
elif normalization == 'instancenorm':
|
89 |
-
ops.append(nn.InstanceNorm3d(n_filters_out))
|
90 |
-
else:
|
91 |
-
assert False
|
92 |
-
else:
|
93 |
-
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
94 |
-
|
95 |
-
ops.append(nn.ReLU(inplace=True))
|
96 |
-
|
97 |
-
self.conv = nn.Sequential(*ops)
|
98 |
-
|
99 |
-
def forward(self, x):
|
100 |
-
x = self.conv(x)
|
101 |
-
return x
|
102 |
-
|
103 |
-
|
104 |
-
class Upsampling(nn.Module):
|
105 |
-
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
106 |
-
super(Upsampling, self).__init__()
|
107 |
-
|
108 |
-
ops = []
|
109 |
-
ops.append(nn.Upsample(scale_factor=stride, mode='trilinear', align_corners=False))
|
110 |
-
ops.append(nn.Conv3d(n_filters_in, n_filters_out, kernel_size=3, padding=1))
|
111 |
-
if normalization == 'batchnorm':
|
112 |
-
ops.append(nn.BatchNorm3d(n_filters_out))
|
113 |
-
elif normalization == 'groupnorm':
|
114 |
-
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
115 |
-
elif normalization == 'instancenorm':
|
116 |
-
ops.append(nn.InstanceNorm3d(n_filters_out))
|
117 |
-
elif normalization != 'none':
|
118 |
-
assert False
|
119 |
-
ops.append(nn.ReLU(inplace=True))
|
120 |
-
|
121 |
-
self.conv = nn.Sequential(*ops)
|
122 |
-
|
123 |
-
def forward(self, x):
|
124 |
-
x = self.conv(x)
|
125 |
-
return x
|
126 |
-
|
127 |
-
|
128 |
-
class ConnectNet(nn.Module):
|
129 |
-
def __init__(self, in_channels, out_channels, input_size):
|
130 |
-
super(ConnectNet, self).__init__()
|
131 |
-
self.encoder = nn.Sequential(
|
132 |
-
nn.Conv3d(in_channels, 128, kernel_size=3, stride=1, padding=1),
|
133 |
-
nn.ReLU(),
|
134 |
-
nn.MaxPool3d(kernel_size=2, stride=2),
|
135 |
-
nn.Conv3d(128, 64, kernel_size=3, stride=1, padding=1),
|
136 |
-
nn.ReLU(),
|
137 |
-
nn.MaxPool3d(kernel_size=2, stride=2)
|
138 |
-
)
|
139 |
-
|
140 |
-
self.decoder = nn.Sequential(
|
141 |
-
nn.ConvTranspose3d(64, 128, kernel_size=2, stride=2),
|
142 |
-
nn.ReLU(),
|
143 |
-
nn.ConvTranspose3d(128, out_channels, kernel_size=2, stride=2),
|
144 |
-
nn.Sigmoid()
|
145 |
-
)
|
146 |
-
|
147 |
-
def forward(self, x):
|
148 |
-
encoded = self.encoder(x)
|
149 |
-
decoded = self.decoder(encoded)
|
150 |
-
return decoded
|
151 |
-
|
152 |
-
|
153 |
-
class VNet(nn.Module):
|
154 |
-
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False):
|
155 |
-
super(VNet, self).__init__()
|
156 |
-
self.has_dropout = has_dropout
|
157 |
-
|
158 |
-
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
159 |
-
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
160 |
-
|
161 |
-
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
162 |
-
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
163 |
-
|
164 |
-
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
165 |
-
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
166 |
-
|
167 |
-
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
168 |
-
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
169 |
-
|
170 |
-
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
171 |
-
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
172 |
-
|
173 |
-
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
174 |
-
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
175 |
-
|
176 |
-
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
177 |
-
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
178 |
-
|
179 |
-
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
180 |
-
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
181 |
-
|
182 |
-
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
183 |
-
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
184 |
-
|
185 |
-
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
|
186 |
-
|
187 |
-
self.__init_weight()
|
188 |
-
|
189 |
-
def encoder(self, input):
|
190 |
-
x1 = self.block_one(input)
|
191 |
-
x1_dw = self.block_one_dw(x1)
|
192 |
-
|
193 |
-
x2 = self.block_two(x1_dw)
|
194 |
-
x2_dw = self.block_two_dw(x2)
|
195 |
-
|
196 |
-
x3 = self.block_three(x2_dw)
|
197 |
-
x3_dw = self.block_three_dw(x3)
|
198 |
-
|
199 |
-
x4 = self.block_four(x3_dw)
|
200 |
-
x4_dw = self.block_four_dw(x4)
|
201 |
-
|
202 |
-
x5 = self.block_five(x4_dw)
|
203 |
-
if self.has_dropout:
|
204 |
-
x5 = self.dropout(x5)
|
205 |
-
|
206 |
-
res = [x1, x2, x3, x4, x5]
|
207 |
-
|
208 |
-
return res
|
209 |
-
|
210 |
-
def decoder(self, features):
|
211 |
-
x1 = features[0]
|
212 |
-
x2 = features[1]
|
213 |
-
x3 = features[2]
|
214 |
-
x4 = features[3]
|
215 |
-
x5 = features[4]
|
216 |
-
|
217 |
-
x5_up = self.block_five_up(x5)
|
218 |
-
x5_up = x5_up + x4
|
219 |
-
|
220 |
-
x6 = self.block_six(x5_up)
|
221 |
-
x6_up = self.block_six_up(x6)
|
222 |
-
x6_up = x6_up + x3
|
223 |
-
|
224 |
-
x7 = self.block_seven(x6_up)
|
225 |
-
x7_up = self.block_seven_up(x7)
|
226 |
-
x7_up = x7_up + x2
|
227 |
-
|
228 |
-
x8 = self.block_eight(x7_up)
|
229 |
-
x8_up = self.block_eight_up(x8)
|
230 |
-
x8_up = x8_up + x1
|
231 |
-
x9 = self.block_nine(x8_up)
|
232 |
-
if self.has_dropout:
|
233 |
-
x9 = self.dropout(x9)
|
234 |
-
out = self.out_conv(x9)
|
235 |
-
return out
|
236 |
-
|
237 |
-
def forward(self, input, turnoff_drop=False):
|
238 |
-
if turnoff_drop:
|
239 |
-
has_dropout = self.has_dropout
|
240 |
-
self.has_dropout = False
|
241 |
-
features = self.encoder(input)
|
242 |
-
out = self.decoder(features)
|
243 |
-
if turnoff_drop:
|
244 |
-
self.has_dropout = has_dropout
|
245 |
-
return out
|
246 |
-
|
247 |
-
def __init_weight(self):
|
248 |
-
for m in self.modules():
|
249 |
-
if isinstance(m, nn.Conv3d) or isinstance(m, nn.ConvTranspose3d):
|
250 |
-
torch.nn.init.kaiming_normal_(m.weight)
|
251 |
-
elif isinstance(m, nn.BatchNorm3d):
|
252 |
-
m.weight.data.fill_(1)
|
253 |
-
m.bias.data.zero_()
|
254 |
-
|
255 |
-
|
256 |
-
class VNet_roi(nn.Module):
|
257 |
-
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False):
|
258 |
-
super(VNet_roi, self).__init__()
|
259 |
-
self.has_dropout = has_dropout
|
260 |
-
|
261 |
-
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
262 |
-
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
263 |
-
|
264 |
-
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
265 |
-
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
266 |
-
|
267 |
-
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
268 |
-
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
269 |
-
|
270 |
-
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
271 |
-
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
272 |
-
|
273 |
-
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
274 |
-
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
275 |
-
|
276 |
-
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
277 |
-
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
278 |
-
|
279 |
-
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
280 |
-
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
281 |
-
|
282 |
-
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
283 |
-
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
284 |
-
|
285 |
-
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
286 |
-
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
287 |
-
|
288 |
-
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
|
289 |
-
# self.__init_weight()
|
290 |
-
|
291 |
-
def encoder(self, input):
|
292 |
-
x1 = self.block_one(input)
|
293 |
-
x1_dw = self.block_one_dw(x1)
|
294 |
-
|
295 |
-
x2 = self.block_two(x1_dw)
|
296 |
-
x2_dw = self.block_two_dw(x2)
|
297 |
-
|
298 |
-
x3 = self.block_three(x2_dw)
|
299 |
-
x3_dw = self.block_three_dw(x3)
|
300 |
-
|
301 |
-
x4 = self.block_four(x3_dw)
|
302 |
-
x4_dw = self.block_four_dw(x4)
|
303 |
-
|
304 |
-
x5 = self.block_five(x4_dw)
|
305 |
-
# x5 = F.dropout3d(x5, p=0.5, training=True)
|
306 |
-
if self.has_dropout:
|
307 |
-
x5 = self.dropout(x5)
|
308 |
-
|
309 |
-
res = [x1, x2, x3, x4, x5]
|
310 |
-
|
311 |
-
return res
|
312 |
-
|
313 |
-
def decoder(self, features):
|
314 |
-
x1 = features[0]
|
315 |
-
x2 = features[1]
|
316 |
-
x3 = features[2]
|
317 |
-
x4 = features[3]
|
318 |
-
x5 = features[4]
|
319 |
-
|
320 |
-
x5_up = self.block_five_up(x5)
|
321 |
-
x5_up = x5_up + x4
|
322 |
-
|
323 |
-
x6 = self.block_six(x5_up)
|
324 |
-
x6_up = self.block_six_up(x6)
|
325 |
-
x6_up = x6_up + x3
|
326 |
-
|
327 |
-
x7 = self.block_seven(x6_up)
|
328 |
-
x7_up = self.block_seven_up(x7)
|
329 |
-
x7_up = x7_up + x2
|
330 |
-
|
331 |
-
x8 = self.block_eight(x7_up)
|
332 |
-
x8_up = self.block_eight_up(x8)
|
333 |
-
x8_up = x8_up + x1
|
334 |
-
x9 = self.block_nine(x8_up)
|
335 |
-
# x9 = F.dropout3d(x9, p=0.5, training=True)
|
336 |
-
if self.has_dropout:
|
337 |
-
x9 = self.dropout(x9)
|
338 |
-
out = self.out_conv(x9)
|
339 |
-
return out
|
340 |
-
|
341 |
-
|
342 |
-
def forward(self, input, turnoff_drop=False):
|
343 |
-
if turnoff_drop:
|
344 |
-
has_dropout = self.has_dropout
|
345 |
-
self.has_dropout = False
|
346 |
-
features = self.encoder(input)
|
347 |
-
out = self.decoder(features)
|
348 |
-
if turnoff_drop:
|
349 |
-
self.has_dropout = has_dropout
|
350 |
-
return out
|
351 |
-
|
352 |
-
|
353 |
-
class ResVNet(nn.Module):
|
354 |
-
def __init__(self, n_channels=1, n_classes=2, n_filters=16, normalization='instancenorm', has_dropout=False):
|
355 |
-
super(ResVNet, self).__init__()
|
356 |
-
self.resencoder = resnet34()
|
357 |
-
self.has_dropout = has_dropout
|
358 |
-
|
359 |
-
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
360 |
-
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
361 |
-
|
362 |
-
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
363 |
-
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
364 |
-
|
365 |
-
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
366 |
-
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
367 |
-
|
368 |
-
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
369 |
-
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
370 |
-
|
371 |
-
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
372 |
-
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
373 |
-
|
374 |
-
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
375 |
-
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
376 |
-
|
377 |
-
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
378 |
-
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
379 |
-
|
380 |
-
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
381 |
-
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
382 |
-
|
383 |
-
|
384 |
-
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
385 |
-
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
386 |
-
|
387 |
-
|
388 |
-
if has_dropout:
|
389 |
-
self.dropout = nn.Dropout3d(p=0.5)
|
390 |
-
self.branchs = nn.ModuleList()
|
391 |
-
for i in range(1):
|
392 |
-
if has_dropout:
|
393 |
-
seq = nn.Sequential(
|
394 |
-
ConvBlock(1, n_filters, n_filters, normalization=normalization),
|
395 |
-
nn.Dropout3d(p=0.5),
|
396 |
-
nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
397 |
-
)
|
398 |
-
else:
|
399 |
-
seq = nn.Sequential(
|
400 |
-
ConvBlock(1, n_filters, n_filters, normalization=normalization),
|
401 |
-
nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
402 |
-
)
|
403 |
-
self.branchs.append(seq)
|
404 |
-
|
405 |
-
def encoder(self, input):
|
406 |
-
x1 = self.block_one(input)
|
407 |
-
x1_dw = self.block_one_dw(x1)
|
408 |
-
|
409 |
-
x2 = self.block_two(x1_dw)
|
410 |
-
x2_dw = self.block_two_dw(x2)
|
411 |
-
|
412 |
-
x3 = self.block_three(x2_dw)
|
413 |
-
x3_dw = self.block_three_dw(x3)
|
414 |
-
|
415 |
-
x4 = self.block_four(x3_dw)
|
416 |
-
x4_dw = self.block_four_dw(x4)
|
417 |
-
|
418 |
-
x5 = self.block_five(x4_dw)
|
419 |
-
|
420 |
-
if self.has_dropout:
|
421 |
-
x5 = self.dropout(x5)
|
422 |
-
|
423 |
-
res = [x1, x2, x3, x4, x5]
|
424 |
-
|
425 |
-
return res
|
426 |
-
|
427 |
-
def decoder(self, features):
|
428 |
-
x1 = features[0]
|
429 |
-
x2 = features[1]
|
430 |
-
x3 = features[2]
|
431 |
-
x4 = features[3]
|
432 |
-
x5 = features[4]
|
433 |
-
|
434 |
-
x5_up = self.block_five_up(x5)
|
435 |
-
x5_up = x5_up + x4
|
436 |
-
|
437 |
-
x6 = self.block_six(x5_up)
|
438 |
-
x6_up = self.block_six_up(x6)
|
439 |
-
x6_up = x6_up + x3
|
440 |
-
|
441 |
-
x7 = self.block_seven(x6_up)
|
442 |
-
x7_up = self.block_seven_up(x7)
|
443 |
-
x7_up = x7_up + x2
|
444 |
-
|
445 |
-
x8 = self.block_eight(x7_up)
|
446 |
-
x8_up = self.block_eight_up(x8)
|
447 |
-
x8_up = x8_up + x1
|
448 |
-
|
449 |
-
|
450 |
-
x9 = self.block_nine(x8_up)
|
451 |
-
|
452 |
-
out = self.out_conv(x9)
|
453 |
-
|
454 |
-
|
455 |
-
return out
|
456 |
-
|
457 |
-
def forward(self, input, turnoff_drop=False):
|
458 |
-
if turnoff_drop:
|
459 |
-
has_dropout = self.has_dropout
|
460 |
-
self.has_dropout = False
|
461 |
-
features = self.resencoder(input)
|
462 |
-
out = self.decoder(features)
|
463 |
-
if turnoff_drop:
|
464 |
-
self.has_dropout = has_dropout
|
465 |
-
return out
|
466 |
-
|
467 |
-
|
468 |
-
__all__ = ['ResNet', 'resnet34']
|
469 |
-
|
470 |
-
|
471 |
-
def conv3x3(in_planes, out_planes, stride=1):
|
472 |
-
"""3x3 convolution with padding"""
|
473 |
-
return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
474 |
-
|
475 |
-
|
476 |
-
def conv3x3_bn_relu(in_planes, out_planes, stride=1):
|
477 |
-
return nn.Sequential(
|
478 |
-
conv3x3(in_planes, out_planes, stride),
|
479 |
-
nn.InstanceNorm3d(out_planes),
|
480 |
-
nn.ReLU()
|
481 |
-
)
|
482 |
-
|
483 |
-
|
484 |
-
class BasicBlock(nn.Module):
|
485 |
-
expansion = 1
|
486 |
-
|
487 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
488 |
-
groups=1, base_width=64, dilation=-1):
|
489 |
-
super(BasicBlock, self).__init__()
|
490 |
-
if groups != 1 or base_width != 64:
|
491 |
-
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
492 |
-
self.conv1 = conv3x3(inplanes, planes, stride)
|
493 |
-
self.bn1 = nn.InstanceNorm3d(planes)
|
494 |
-
self.relu = nn.ReLU(inplace=True)
|
495 |
-
self.conv2 = conv3x3(planes, planes)
|
496 |
-
self.bn2 = nn.InstanceNorm3d(planes)
|
497 |
-
self.downsample = downsample
|
498 |
-
self.stride = stride
|
499 |
-
|
500 |
-
def forward(self, x):
|
501 |
-
residual = x
|
502 |
-
|
503 |
-
out = self.conv1(x)
|
504 |
-
out = self.bn1(out)
|
505 |
-
out = self.relu(out)
|
506 |
-
|
507 |
-
out = self.conv2(out)
|
508 |
-
out = self.bn2(out)
|
509 |
-
|
510 |
-
if self.downsample is not None:
|
511 |
-
residual = self.downsample(x)
|
512 |
-
|
513 |
-
out += residual
|
514 |
-
out = self.relu(out)
|
515 |
-
|
516 |
-
return out
|
517 |
-
|
518 |
-
|
519 |
-
class Bottleneck(nn.Module):
|
520 |
-
expansion = 4
|
521 |
-
|
522 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
523 |
-
groups=1, base_width=64, dilation=1):
|
524 |
-
super(Bottleneck, self).__init__()
|
525 |
-
width = int(planes * (base_width / 64.)) * groups
|
526 |
-
self.conv1 = nn.Conv3d(inplanes, width, kernel_size=1, bias=False)
|
527 |
-
self.bn1 = nn.InstanceNorm3d(width)
|
528 |
-
self.conv2 = nn.Conv3d(width, width, kernel_size=3, stride=stride, dilation=dilation,
|
529 |
-
padding=dilation, groups=groups, bias=False)
|
530 |
-
self.bn2 = nn.InstanceNorm3d(width)
|
531 |
-
self.conv3 = nn.Conv3d(width, planes * self.expansion, kernel_size=1, bias=False)
|
532 |
-
self.bn3 = nn.InstanceNorm3d(planes * self.expansion)
|
533 |
-
self.relu = nn.ReLU(inplace=True)
|
534 |
-
self.downsample = downsample
|
535 |
-
self.stride = stride
|
536 |
-
|
537 |
-
def forward(self, x):
|
538 |
-
residual = x
|
539 |
-
|
540 |
-
out = self.conv1(x)
|
541 |
-
out = self.bn1(out)
|
542 |
-
out = self.relu(out)
|
543 |
-
|
544 |
-
out = self.conv2(out)
|
545 |
-
out = self.bn2(out)
|
546 |
-
out = self.relu(out)
|
547 |
-
|
548 |
-
out = self.conv3(out)
|
549 |
-
out = self.bn3(out)
|
550 |
-
|
551 |
-
if self.downsample is not None:
|
552 |
-
residual = self.downsample(x)
|
553 |
-
|
554 |
-
out += residual
|
555 |
-
out = self.relu(out)
|
556 |
-
|
557 |
-
return out
|
558 |
-
|
559 |
-
|
560 |
-
class ResNet(nn.Module):
|
561 |
-
|
562 |
-
def __init__(self, block, layers, in_channel=1, width=1,
|
563 |
-
groups=1, width_per_group=64,
|
564 |
-
mid_dim=1024, low_dim=128,
|
565 |
-
avg_down=False, deep_stem=False,
|
566 |
-
head_type='mlp_head', layer4_dilation=1):
|
567 |
-
super(ResNet, self).__init__()
|
568 |
-
self.avg_down = avg_down
|
569 |
-
self.inplanes = 16 * width
|
570 |
-
self.base = int(16 * width)
|
571 |
-
self.groups = groups
|
572 |
-
self.base_width = width_per_group
|
573 |
-
|
574 |
-
mid_dim = self.base * 8 * block.expansion
|
575 |
-
|
576 |
-
if deep_stem:
|
577 |
-
self.conv1 = nn.Sequential(
|
578 |
-
conv3x3_bn_relu(in_channel, 32, stride=2),
|
579 |
-
conv3x3_bn_relu(32, 32, stride=1),
|
580 |
-
conv3x3(32, 64, stride=1)
|
581 |
-
)
|
582 |
-
else:
|
583 |
-
self.conv1 = nn.Conv3d(in_channel, self.inplanes, kernel_size=7, stride=1, padding=3, bias=False)
|
584 |
-
|
585 |
-
self.bn1 = nn.InstanceNorm3d(self.inplanes)
|
586 |
-
self.relu = nn.ReLU(inplace=True)
|
587 |
-
|
588 |
-
self.maxpool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1)
|
589 |
-
self.layer1 = self._make_layer(block, self.base*2, layers[0],stride=2)
|
590 |
-
self.layer2 = self._make_layer(block, self.base * 4, layers[1], stride=2)
|
591 |
-
self.layer3 = self._make_layer(block, self.base * 8, layers[2], stride=2)
|
592 |
-
if layer4_dilation == 1:
|
593 |
-
self.layer4 = self._make_layer(block, self.base * 16, layers[3], stride=2)
|
594 |
-
elif layer4_dilation == 2:
|
595 |
-
self.layer4 = self._make_layer(block, self.base * 16, layers[3], stride=1, dilation=2)
|
596 |
-
else:
|
597 |
-
raise NotImplementedError
|
598 |
-
self.avgpool = nn.AvgPool3d(7, stride=1)
|
599 |
-
|
600 |
-
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
|
601 |
-
downsample = None
|
602 |
-
if stride != 1 or self.inplanes != planes * block.expansion:
|
603 |
-
if self.avg_down:
|
604 |
-
downsample = nn.Sequential(
|
605 |
-
nn.AvgPool3d(kernel_size=stride, stride=stride),
|
606 |
-
nn.Conv3d(self.inplanes, planes * block.expansion,
|
607 |
-
kernel_size=1, stride=1, bias=False),
|
608 |
-
nn.InstanceNorm3d(planes * block.expansion),
|
609 |
-
)
|
610 |
-
else:
|
611 |
-
downsample = nn.Sequential(
|
612 |
-
nn.Conv3d(self.inplanes, planes * block.expansion,
|
613 |
-
kernel_size=1, stride=stride, bias=False),
|
614 |
-
nn.InstanceNorm3d(planes * block.expansion),
|
615 |
-
)
|
616 |
-
|
617 |
-
layers = [block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, dilation)]
|
618 |
-
self.inplanes = planes * block.expansion
|
619 |
-
for _ in range(1, blocks):
|
620 |
-
layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=dilation))
|
621 |
-
|
622 |
-
return nn.Sequential(*layers)
|
623 |
-
|
624 |
-
def forward(self, x):
|
625 |
-
x = self.conv1(x)
|
626 |
-
x = self.bn1(x)
|
627 |
-
x = self.relu(x)
|
628 |
-
#c2 = self.maxpool(x)
|
629 |
-
c2 = self.layer1(x)
|
630 |
-
c3 = self.layer2(c2)
|
631 |
-
c4 = self.layer3(c3)
|
632 |
-
c5 = self.layer4(c4)
|
633 |
-
|
634 |
-
|
635 |
-
return [x,c2,c3,c4,c5]
|
636 |
-
|
637 |
-
|
638 |
-
def resnet34(**kwargs):
|
639 |
-
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
640 |
-
|
641 |
-
|
642 |
-
def label_rescale(image_label, w_ori, h_ori, z_ori, flag):
|
643 |
-
w_ori, h_ori, z_ori = int(w_ori), int(h_ori), int(z_ori)
|
644 |
-
# resize label map (int)
|
645 |
-
if flag == 'trilinear':
|
646 |
-
teeth_ids = np.unique(image_label)
|
647 |
-
image_label_ori = np.zeros((w_ori, h_ori, z_ori))
|
648 |
-
|
649 |
-
|
650 |
-
image_label = torch.from_numpy(image_label).cuda(0)
|
651 |
-
|
652 |
-
|
653 |
-
# image_label = torch.from_numpy(image_label).to("cpu")
|
654 |
-
for label_id in range(len(teeth_ids)):
|
655 |
-
image_label_bn = (image_label == teeth_ids[label_id]).float()
|
656 |
-
image_label_bn = image_label_bn[None, None, :, :, :]
|
657 |
-
image_label_bn = torch.nn.functional.interpolate(image_label_bn, size=(w_ori, h_ori, z_ori),
|
658 |
-
mode='trilinear', align_corners=False)
|
659 |
-
image_label_bn = image_label_bn[0, 0, :, :, :]
|
660 |
-
image_label_bn = image_label_bn.cpu().data.numpy()
|
661 |
-
image_label_ori[image_label_bn > 0.5] = teeth_ids[label_id]
|
662 |
-
image_label = image_label_ori
|
663 |
-
|
664 |
-
if flag == 'nearest':
|
665 |
-
|
666 |
-
|
667 |
-
image_label = torch.from_numpy(image_label).cuda(0)
|
668 |
-
|
669 |
-
|
670 |
-
# image_label = torch.from_numpy(image_label).to("cpu")
|
671 |
-
image_label = image_label[None, None, :, :, :].float()
|
672 |
-
image_label = torch.nn.functional.interpolate(image_label, size=(w_ori, h_ori, z_ori), mode='nearest')
|
673 |
-
image_label = image_label[0, 0, :, :, :].cpu().data.numpy()
|
674 |
-
return image_label
|
675 |
-
|
676 |
-
|
677 |
-
def img_crop(image_bbox):
|
678 |
-
if image_bbox.sum() > 0:
|
679 |
-
|
680 |
-
x_min = np.nonzero(image_bbox)[0].min() - 8
|
681 |
-
x_max = np.nonzero(image_bbox)[0].max() + 8
|
682 |
-
|
683 |
-
y_min = np.nonzero(image_bbox)[1].min() - 16
|
684 |
-
y_max = np.nonzero(image_bbox)[1].max() + 16
|
685 |
-
|
686 |
-
z_min = np.nonzero(image_bbox)[2].min() - 16
|
687 |
-
z_max = np.nonzero(image_bbox)[2].max() + 16
|
688 |
-
|
689 |
-
if x_min < 0:
|
690 |
-
x_min = 0
|
691 |
-
if y_min < 0:
|
692 |
-
y_min = 0
|
693 |
-
if z_min < 0:
|
694 |
-
z_min = 0
|
695 |
-
if x_max > image_bbox.shape[0]:
|
696 |
-
x_max = image_bbox.shape[0]
|
697 |
-
if y_max > image_bbox.shape[1]:
|
698 |
-
y_max = image_bbox.shape[1]
|
699 |
-
if z_max > image_bbox.shape[2]:
|
700 |
-
z_max = image_bbox.shape[2]
|
701 |
-
|
702 |
-
if (x_max - x_min) % 16 != 0:
|
703 |
-
x_max -= (x_max - x_min) % 16
|
704 |
-
if (y_max - y_min) % 16 != 0:
|
705 |
-
y_max -= (y_max - y_min) % 16
|
706 |
-
if (z_max - z_min) % 16 != 0:
|
707 |
-
z_max -= (z_max - z_min) % 16
|
708 |
-
|
709 |
-
if image_bbox.sum() == 0:
|
710 |
-
x_min, x_max, y_min, y_max, z_min, z_max = -1, image_bbox.shape[0], 0, image_bbox.shape[1], 0, image_bbox.shape[
|
711 |
-
2]
|
712 |
-
return x_min, x_max, y_min, y_max, z_min, z_max
|
713 |
-
|
714 |
-
|
715 |
-
def roi_extraction(image, net_roi, ids):
|
716 |
-
w, h, d = image.shape
|
717 |
-
# roi binary segmentation parameters, the input spacing is 0.4 mm
|
718 |
-
print('---run the roi binary segmentation.')
|
719 |
-
|
720 |
-
stride_xy = 32
|
721 |
-
stride_z = 16
|
722 |
-
patch_size_roi_stage = (112, 112, 80)
|
723 |
-
|
724 |
-
label_roi = roi_detection(net_roi, image[0:w:2, 0:h:2, 0:d:2], stride_xy, stride_z,
|
725 |
-
patch_size_roi_stage) # (400,400,200)
|
726 |
-
print(label_roi.shape, np.max(label_roi))
|
727 |
-
label_roi = label_rescale(label_roi, w, h, d, 'trilinear') # (800,800,400)
|
728 |
-
|
729 |
-
label_roi = morphology.remove_small_objects(label_roi.astype(bool), 5000, connectivity=3).astype(float)
|
730 |
-
|
731 |
-
label_roi = ndimage.grey_dilation(label_roi, size=(5, 5, 5))
|
732 |
-
|
733 |
-
label_roi = morphology.remove_small_objects(label_roi.astype(bool), 400000, connectivity=3).astype(
|
734 |
-
float)
|
735 |
-
|
736 |
-
label_roi = ndimage.grey_erosion(label_roi, size=(5, 5, 5))
|
737 |
-
|
738 |
-
# crop image
|
739 |
-
x_min, x_max, y_min, y_max, z_min, z_max = img_crop(label_roi)
|
740 |
-
if x_min == -1: # non-foreground label
|
741 |
-
whole_label = np.zeros((w, h, d))
|
742 |
-
return whole_label
|
743 |
-
image = image[x_min:x_max, y_min:y_max, z_min:z_max]
|
744 |
-
print("image shape(after roi): ", image.shape)
|
745 |
-
|
746 |
-
return image, x_min, x_max, y_min, y_max, z_min, z_max
|
747 |
-
|
748 |
-
|
749 |
-
def roi_detection(net, image, stride_xy, stride_z, patch_size):
|
750 |
-
w, h, d = image.shape # (400,400,200)
|
751 |
-
|
752 |
-
# if the size of image is less than patch_size, then padding it
|
753 |
-
add_pad = False
|
754 |
-
if w < patch_size[0]:
|
755 |
-
w_pad = patch_size[0] - w
|
756 |
-
add_pad = True
|
757 |
-
else:
|
758 |
-
w_pad = 0
|
759 |
-
if h < patch_size[1]:
|
760 |
-
h_pad = patch_size[1] - h
|
761 |
-
add_pad = True
|
762 |
-
else:
|
763 |
-
h_pad = 0
|
764 |
-
if d < patch_size[2]:
|
765 |
-
d_pad = patch_size[2] - d
|
766 |
-
add_pad = True
|
767 |
-
else:
|
768 |
-
d_pad = 0
|
769 |
-
wl_pad, wr_pad = w_pad // 2, w_pad - w_pad // 2
|
770 |
-
hl_pad, hr_pad = h_pad // 2, h_pad - h_pad // 2
|
771 |
-
dl_pad, dr_pad = d_pad // 2, d_pad - d_pad // 2
|
772 |
-
if add_pad:
|
773 |
-
image = np.pad(image, [(wl_pad, wr_pad), (hl_pad, hr_pad), (dl_pad, dr_pad)], mode='constant',
|
774 |
-
constant_values=0)
|
775 |
-
ww, hh, dd = image.shape
|
776 |
-
|
777 |
-
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1 # 2
|
778 |
-
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1 # 2
|
779 |
-
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1 # 2
|
780 |
-
score_map = np.zeros((2,) + image.shape).astype(np.float32)
|
781 |
-
cnt = np.zeros(image.shape).astype(np.float32)
|
782 |
-
count = 0
|
783 |
-
for x in range(0, sx):
|
784 |
-
xs = min(stride_xy * x, ww - patch_size[0])
|
785 |
-
for y in range(0, sy):
|
786 |
-
ys = min(stride_xy * y, hh - patch_size[1])
|
787 |
-
for z in range(0, sz):
|
788 |
-
zs = min(stride_z * z, dd - patch_size[2])
|
789 |
-
test_patch = image[xs:xs + patch_size[0], ys:ys + patch_size[1],
|
790 |
-
zs:zs + patch_size[2]]
|
791 |
-
test_patch = np.expand_dims(np.expand_dims(test_patch, axis=0), axis=0).astype(
|
792 |
-
np.float32)
|
793 |
-
|
794 |
-
|
795 |
-
test_patch = torch.from_numpy(test_patch).cuda(0)
|
796 |
-
|
797 |
-
|
798 |
-
# test_patch = torch.from_numpy(test_patch).to("cpu")
|
799 |
-
with torch.no_grad():
|
800 |
-
y1 = net(test_patch) # (1,2,256,256,160)
|
801 |
-
y = F.softmax(y1, dim=1) # (1,2,256,256,160)
|
802 |
-
y = y.cpu().data.numpy()
|
803 |
-
y = y[0, :, :, :, :] # (2,256,256,160)
|
804 |
-
score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \
|
805 |
-
= score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1],
|
806 |
-
zs:zs + patch_size[2]] + y # (2,400,400,200)
|
807 |
-
cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \
|
808 |
-
= cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] + 1 # (400,400,200)
|
809 |
-
count = count + 1
|
810 |
-
score_map = score_map / np.expand_dims(cnt, axis=0)
|
811 |
-
|
812 |
-
label_map = np.argmax(score_map, axis=0) # (400,400,200),0/1
|
813 |
-
if add_pad:
|
814 |
-
label_map = label_map[wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d]
|
815 |
-
score_map = score_map[:, wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d]
|
816 |
-
return label_map
|
817 |
-
|
818 |
-
|
819 |
-
def test_single_case_array(model_array, image=None, stride_xy=None, stride_z=None, patch_size=None, num_classes=1):
|
820 |
-
w, h, d = image.shape
|
821 |
-
|
822 |
-
# if the size of image is less than patch_size, then padding it
|
823 |
-
add_pad = False
|
824 |
-
if w < patch_size[0]:
|
825 |
-
w_pad = patch_size[0]-w
|
826 |
-
add_pad = True
|
827 |
-
else:
|
828 |
-
w_pad = 0
|
829 |
-
if h < patch_size[1]:
|
830 |
-
h_pad = patch_size[1]-h
|
831 |
-
add_pad = True
|
832 |
-
else:
|
833 |
-
h_pad = 0
|
834 |
-
if d < patch_size[2]:
|
835 |
-
d_pad = patch_size[2]-d
|
836 |
-
add_pad = True
|
837 |
-
else:
|
838 |
-
d_pad = 0
|
839 |
-
wl_pad, wr_pad = w_pad//2,w_pad-w_pad//2
|
840 |
-
hl_pad, hr_pad = h_pad//2,h_pad-h_pad//2
|
841 |
-
dl_pad, dr_pad = d_pad//2,d_pad-d_pad//2
|
842 |
-
if add_pad:
|
843 |
-
image = np.pad(image, [(wl_pad,wr_pad),(hl_pad,hr_pad), (dl_pad, dr_pad)], mode='constant', constant_values=0)
|
844 |
-
|
845 |
-
ww,hh,dd = image.shape
|
846 |
-
|
847 |
-
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1
|
848 |
-
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1
|
849 |
-
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1
|
850 |
-
score_map = np.zeros((num_classes, ) + image.shape).astype(np.float32)
|
851 |
-
cnt = np.zeros(image.shape).astype(np.float32)
|
852 |
-
|
853 |
-
for x in range(0, sx):
|
854 |
-
xs = min(stride_xy*x, ww-patch_size[0])
|
855 |
-
for y in range(0, sy):
|
856 |
-
ys = min(stride_xy * y,hh-patch_size[1])
|
857 |
-
for z in range(0, sz):
|
858 |
-
zs = min(stride_z * z, dd-patch_size[2])
|
859 |
-
test_patch = image[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]]
|
860 |
-
test_patch = np.expand_dims(np.expand_dims(test_patch,axis=0),axis=0).astype(np.float32)
|
861 |
-
|
862 |
-
|
863 |
-
test_patch = torch.from_numpy(test_patch).cuda()
|
864 |
-
|
865 |
-
|
866 |
-
# test_patch = torch.from_numpy(test_patch).to("cpu")
|
867 |
-
for model in model_array:
|
868 |
-
output = model(test_patch)
|
869 |
-
y_temp = F.softmax(output, dim=1)
|
870 |
-
y_temp = y_temp.cpu().data.numpy()
|
871 |
-
y += y_temp[0,:,:,:,:]
|
872 |
-
y /= len(model_array)
|
873 |
-
score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
|
874 |
-
= score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + y
|
875 |
-
cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
|
876 |
-
= cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + 1
|
877 |
-
score_map = score_map/np.expand_dims(cnt,axis=0)
|
878 |
-
|
879 |
-
label_map = np.argmax(score_map, axis = 0)
|
880 |
-
if add_pad:
|
881 |
-
label_map = label_map[wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
|
882 |
-
score_map = score_map[:,wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
|
883 |
-
return label_map, score_map
|
884 |
-
|
885 |
-
def calculate_metric_percase(pred, gt):
|
886 |
-
dice = metric.binary.dc(pred, gt)
|
887 |
-
jc = metric.binary.jc(pred, gt)
|
888 |
-
hd = metric.binary.hd95(pred, gt)
|
889 |
-
asd = metric.binary.asd(pred, gt)
|
890 |
-
|
891 |
-
return dice, jc, hd, asd
|
892 |
-
|
893 |
-
|
894 |
-
class RailNetSystem(nn.Module, PyTorchModelHubMixin):
|
895 |
-
def __init__(self, n_channels: int, n_classes: int, normalization: str):
|
896 |
-
super().__init__()
|
897 |
-
|
898 |
-
self.num_classes = 2
|
899 |
-
|
900 |
-
|
901 |
-
self.net_roi = VNet_roi(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=False).cuda()
|
902 |
-
|
903 |
-
|
904 |
-
# self.net_roi = VNet_roi(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=False).to("cpu")
|
905 |
-
|
906 |
-
self.model_array = []
|
907 |
-
for i in range(4):
|
908 |
-
if i < 2:
|
909 |
-
|
910 |
-
|
911 |
-
model = VNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).cuda()
|
912 |
-
|
913 |
-
|
914 |
-
# model = VNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).to("cpu")
|
915 |
-
else:
|
916 |
-
|
917 |
-
|
918 |
-
model = ResVNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).cuda()
|
919 |
-
|
920 |
-
|
921 |
-
# model = ResVNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).to("cpu")
|
922 |
-
self.model_array.append(model)
|
923 |
-
|
924 |
-
def load_weights(self, weight_dir=".", from_hub=False, repo_id=None):
|
925 |
-
def load(file_name):
|
926 |
-
if from_hub:
|
927 |
-
return hf_hub_download(repo_id=repo_id, filename=f"model weights/{file_name}")
|
928 |
-
else:
|
929 |
-
return os.path.join(weight_dir, "model weights", file_name)
|
930 |
-
|
931 |
-
|
932 |
-
# self.net_roi.load_state_dict(torch.load(os.path.join(weight_dir, "model weights", "roi_best_model.pth"), map_location="cuda", weights_only=True))
|
933 |
-
|
934 |
-
|
935 |
-
# self.net_roi.load_state_dict(torch.load(os.path.join(weight_dir, "model weights", "roi_best_model.pth"), map_location="cpu", weights_only=True))
|
936 |
-
self.net_roi.load_state_dict(torch.load(load("roi_best_model.pth"), map_location="cuda", weights_only=True))
|
937 |
-
self.net_roi.eval()
|
938 |
-
|
939 |
-
model_files = [
|
940 |
-
"rail_0_iter_7995_best.pth",
|
941 |
-
"rail_1_iter_7995_best.pth",
|
942 |
-
"rail_2_iter_7995_best.pth",
|
943 |
-
"rail_3_iter_7995_best.pth",
|
944 |
-
]
|
945 |
-
for i, file in enumerate(model_files):
|
946 |
-
|
947 |
-
|
948 |
-
# self.model_array[i].load_state_dict(torch.load(os.path.join(weight_dir, "model weights", file), map_location="cuda", weights_only=True))
|
949 |
-
|
950 |
-
|
951 |
-
# self.model_array[i].load_state_dict(torch.load(os.path.join(weight_dir, "model weights", file), map_location="cpu", weights_only=True))
|
952 |
-
self.model_array[i].load_state_dict(torch.load(load(file), map_location="cuda", weights_only=True))
|
953 |
-
self.model_array[i].eval()
|
954 |
-
|
955 |
-
def forward(self, image, label, save_path="./output", name="case"):
|
956 |
-
if not os.path.exists(save_path):
|
957 |
-
os.makedirs(save_path)
|
958 |
-
nib.save(nib.Nifti1Image(image.astype(np.float32), np.eye(4)), os.path.join(save_path, f"{name}_img.nii.gz"))
|
959 |
-
|
960 |
-
w, h, d = image.shape
|
961 |
-
|
962 |
-
image, x_min, x_max, y_min, y_max, z_min, z_max = roi_extraction(image, self.net_roi, name)
|
963 |
-
|
964 |
-
prediction, _ = test_single_case_array(self.model_array, image, stride_xy=64, stride_z=32, patch_size=(112, 112, 80), num_classes=self.num_classes)
|
965 |
-
|
966 |
-
prediction = morphology.remove_small_objects(prediction.astype(bool), 3000, connectivity=3).astype(float)
|
967 |
-
|
968 |
-
new_prediction = np.zeros((w, h, d))
|
969 |
-
new_prediction[x_min:x_max, y_min:y_max, z_min:z_max] = prediction
|
970 |
-
|
971 |
-
dice, jc, hd, asd = calculate_metric_percase(new_prediction, label[:])
|
972 |
-
|
973 |
-
nib.save(nib.Nifti1Image(new_prediction.astype(np.float32), np.eye(4)), os.path.join(save_path, f"{name}_pred.nii.gz"))
|
974 |
-
|
975 |
-
return new_prediction, dice, jc, hd, asd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|