Upload railnet_model.py
Browse files- railnet_model.py +975 -0
railnet_model.py
ADDED
|
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
| 3 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import nibabel as nib
|
| 12 |
+
from skimage import morphology
|
| 13 |
+
|
| 14 |
+
import math
|
| 15 |
+
from scipy import ndimage
|
| 16 |
+
from medpy import metric
|
| 17 |
+
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ConvBlock(nn.Module):
|
| 22 |
+
def __init__(self, n_stages, n_filters_in, n_filters_out, normalization='none'):
|
| 23 |
+
super(ConvBlock, self).__init__()
|
| 24 |
+
|
| 25 |
+
ops = []
|
| 26 |
+
for i in range(n_stages):
|
| 27 |
+
if i == 0:
|
| 28 |
+
input_channel = n_filters_in
|
| 29 |
+
else:
|
| 30 |
+
input_channel = n_filters_out
|
| 31 |
+
|
| 32 |
+
ops.append(nn.Conv3d(input_channel, n_filters_out, 3, padding=1))
|
| 33 |
+
if normalization == 'batchnorm':
|
| 34 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
| 35 |
+
elif normalization == 'groupnorm':
|
| 36 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
| 37 |
+
elif normalization == 'instancenorm':
|
| 38 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
| 39 |
+
elif normalization != 'none':
|
| 40 |
+
assert False
|
| 41 |
+
ops.append(nn.ReLU(inplace=True))
|
| 42 |
+
|
| 43 |
+
self.conv = nn.Sequential(*ops)
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
x = self.conv(x)
|
| 47 |
+
return x
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class DownsamplingConvBlock(nn.Module):
|
| 51 |
+
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
| 52 |
+
super(DownsamplingConvBlock, self).__init__()
|
| 53 |
+
|
| 54 |
+
ops = []
|
| 55 |
+
if normalization != 'none':
|
| 56 |
+
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
| 57 |
+
if normalization == 'batchnorm':
|
| 58 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
| 59 |
+
elif normalization == 'groupnorm':
|
| 60 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
| 61 |
+
elif normalization == 'instancenorm':
|
| 62 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
| 63 |
+
else:
|
| 64 |
+
assert False
|
| 65 |
+
else:
|
| 66 |
+
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
| 67 |
+
|
| 68 |
+
ops.append(nn.ReLU(inplace=True))
|
| 69 |
+
|
| 70 |
+
self.conv = nn.Sequential(*ops)
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
x = self.conv(x)
|
| 74 |
+
return x
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class UpsamplingDeconvBlock(nn.Module):
|
| 78 |
+
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
| 79 |
+
super(UpsamplingDeconvBlock, self).__init__()
|
| 80 |
+
|
| 81 |
+
ops = []
|
| 82 |
+
if normalization != 'none':
|
| 83 |
+
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
| 84 |
+
if normalization == 'batchnorm':
|
| 85 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
| 86 |
+
elif normalization == 'groupnorm':
|
| 87 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
| 88 |
+
elif normalization == 'instancenorm':
|
| 89 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
| 90 |
+
else:
|
| 91 |
+
assert False
|
| 92 |
+
else:
|
| 93 |
+
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
|
| 94 |
+
|
| 95 |
+
ops.append(nn.ReLU(inplace=True))
|
| 96 |
+
|
| 97 |
+
self.conv = nn.Sequential(*ops)
|
| 98 |
+
|
| 99 |
+
def forward(self, x):
|
| 100 |
+
x = self.conv(x)
|
| 101 |
+
return x
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class Upsampling(nn.Module):
|
| 105 |
+
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
|
| 106 |
+
super(Upsampling, self).__init__()
|
| 107 |
+
|
| 108 |
+
ops = []
|
| 109 |
+
ops.append(nn.Upsample(scale_factor=stride, mode='trilinear', align_corners=False))
|
| 110 |
+
ops.append(nn.Conv3d(n_filters_in, n_filters_out, kernel_size=3, padding=1))
|
| 111 |
+
if normalization == 'batchnorm':
|
| 112 |
+
ops.append(nn.BatchNorm3d(n_filters_out))
|
| 113 |
+
elif normalization == 'groupnorm':
|
| 114 |
+
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
|
| 115 |
+
elif normalization == 'instancenorm':
|
| 116 |
+
ops.append(nn.InstanceNorm3d(n_filters_out))
|
| 117 |
+
elif normalization != 'none':
|
| 118 |
+
assert False
|
| 119 |
+
ops.append(nn.ReLU(inplace=True))
|
| 120 |
+
|
| 121 |
+
self.conv = nn.Sequential(*ops)
|
| 122 |
+
|
| 123 |
+
def forward(self, x):
|
| 124 |
+
x = self.conv(x)
|
| 125 |
+
return x
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class ConnectNet(nn.Module):
|
| 129 |
+
def __init__(self, in_channels, out_channels, input_size):
|
| 130 |
+
super(ConnectNet, self).__init__()
|
| 131 |
+
self.encoder = nn.Sequential(
|
| 132 |
+
nn.Conv3d(in_channels, 128, kernel_size=3, stride=1, padding=1),
|
| 133 |
+
nn.ReLU(),
|
| 134 |
+
nn.MaxPool3d(kernel_size=2, stride=2),
|
| 135 |
+
nn.Conv3d(128, 64, kernel_size=3, stride=1, padding=1),
|
| 136 |
+
nn.ReLU(),
|
| 137 |
+
nn.MaxPool3d(kernel_size=2, stride=2)
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
self.decoder = nn.Sequential(
|
| 141 |
+
nn.ConvTranspose3d(64, 128, kernel_size=2, stride=2),
|
| 142 |
+
nn.ReLU(),
|
| 143 |
+
nn.ConvTranspose3d(128, out_channels, kernel_size=2, stride=2),
|
| 144 |
+
nn.Sigmoid()
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
def forward(self, x):
|
| 148 |
+
encoded = self.encoder(x)
|
| 149 |
+
decoded = self.decoder(encoded)
|
| 150 |
+
return decoded
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class VNet(nn.Module):
|
| 154 |
+
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False):
|
| 155 |
+
super(VNet, self).__init__()
|
| 156 |
+
self.has_dropout = has_dropout
|
| 157 |
+
|
| 158 |
+
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
| 159 |
+
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
| 160 |
+
|
| 161 |
+
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
| 162 |
+
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
| 163 |
+
|
| 164 |
+
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
| 165 |
+
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
| 166 |
+
|
| 167 |
+
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
| 168 |
+
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
| 169 |
+
|
| 170 |
+
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
| 171 |
+
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
| 172 |
+
|
| 173 |
+
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
| 174 |
+
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
| 175 |
+
|
| 176 |
+
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
| 177 |
+
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
| 178 |
+
|
| 179 |
+
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
| 180 |
+
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
| 181 |
+
|
| 182 |
+
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
| 183 |
+
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
| 184 |
+
|
| 185 |
+
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
|
| 186 |
+
|
| 187 |
+
self.__init_weight()
|
| 188 |
+
|
| 189 |
+
def encoder(self, input):
|
| 190 |
+
x1 = self.block_one(input)
|
| 191 |
+
x1_dw = self.block_one_dw(x1)
|
| 192 |
+
|
| 193 |
+
x2 = self.block_two(x1_dw)
|
| 194 |
+
x2_dw = self.block_two_dw(x2)
|
| 195 |
+
|
| 196 |
+
x3 = self.block_three(x2_dw)
|
| 197 |
+
x3_dw = self.block_three_dw(x3)
|
| 198 |
+
|
| 199 |
+
x4 = self.block_four(x3_dw)
|
| 200 |
+
x4_dw = self.block_four_dw(x4)
|
| 201 |
+
|
| 202 |
+
x5 = self.block_five(x4_dw)
|
| 203 |
+
if self.has_dropout:
|
| 204 |
+
x5 = self.dropout(x5)
|
| 205 |
+
|
| 206 |
+
res = [x1, x2, x3, x4, x5]
|
| 207 |
+
|
| 208 |
+
return res
|
| 209 |
+
|
| 210 |
+
def decoder(self, features):
|
| 211 |
+
x1 = features[0]
|
| 212 |
+
x2 = features[1]
|
| 213 |
+
x3 = features[2]
|
| 214 |
+
x4 = features[3]
|
| 215 |
+
x5 = features[4]
|
| 216 |
+
|
| 217 |
+
x5_up = self.block_five_up(x5)
|
| 218 |
+
x5_up = x5_up + x4
|
| 219 |
+
|
| 220 |
+
x6 = self.block_six(x5_up)
|
| 221 |
+
x6_up = self.block_six_up(x6)
|
| 222 |
+
x6_up = x6_up + x3
|
| 223 |
+
|
| 224 |
+
x7 = self.block_seven(x6_up)
|
| 225 |
+
x7_up = self.block_seven_up(x7)
|
| 226 |
+
x7_up = x7_up + x2
|
| 227 |
+
|
| 228 |
+
x8 = self.block_eight(x7_up)
|
| 229 |
+
x8_up = self.block_eight_up(x8)
|
| 230 |
+
x8_up = x8_up + x1
|
| 231 |
+
x9 = self.block_nine(x8_up)
|
| 232 |
+
if self.has_dropout:
|
| 233 |
+
x9 = self.dropout(x9)
|
| 234 |
+
out = self.out_conv(x9)
|
| 235 |
+
return out
|
| 236 |
+
|
| 237 |
+
def forward(self, input, turnoff_drop=False):
|
| 238 |
+
if turnoff_drop:
|
| 239 |
+
has_dropout = self.has_dropout
|
| 240 |
+
self.has_dropout = False
|
| 241 |
+
features = self.encoder(input)
|
| 242 |
+
out = self.decoder(features)
|
| 243 |
+
if turnoff_drop:
|
| 244 |
+
self.has_dropout = has_dropout
|
| 245 |
+
return out
|
| 246 |
+
|
| 247 |
+
def __init_weight(self):
|
| 248 |
+
for m in self.modules():
|
| 249 |
+
if isinstance(m, nn.Conv3d) or isinstance(m, nn.ConvTranspose3d):
|
| 250 |
+
torch.nn.init.kaiming_normal_(m.weight)
|
| 251 |
+
elif isinstance(m, nn.BatchNorm3d):
|
| 252 |
+
m.weight.data.fill_(1)
|
| 253 |
+
m.bias.data.zero_()
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class VNet_roi(nn.Module):
|
| 257 |
+
def __init__(self, n_channels=3, n_classes=2, n_filters=16, normalization='none', has_dropout=False):
|
| 258 |
+
super(VNet_roi, self).__init__()
|
| 259 |
+
self.has_dropout = has_dropout
|
| 260 |
+
|
| 261 |
+
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
| 262 |
+
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
| 263 |
+
|
| 264 |
+
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
| 265 |
+
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
| 266 |
+
|
| 267 |
+
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
| 268 |
+
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
| 269 |
+
|
| 270 |
+
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
| 271 |
+
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
| 272 |
+
|
| 273 |
+
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
| 274 |
+
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
| 275 |
+
|
| 276 |
+
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
| 277 |
+
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
| 278 |
+
|
| 279 |
+
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
| 280 |
+
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
| 281 |
+
|
| 282 |
+
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
| 283 |
+
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
| 284 |
+
|
| 285 |
+
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
| 286 |
+
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
| 287 |
+
|
| 288 |
+
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
|
| 289 |
+
# self.__init_weight()
|
| 290 |
+
|
| 291 |
+
def encoder(self, input):
|
| 292 |
+
x1 = self.block_one(input)
|
| 293 |
+
x1_dw = self.block_one_dw(x1)
|
| 294 |
+
|
| 295 |
+
x2 = self.block_two(x1_dw)
|
| 296 |
+
x2_dw = self.block_two_dw(x2)
|
| 297 |
+
|
| 298 |
+
x3 = self.block_three(x2_dw)
|
| 299 |
+
x3_dw = self.block_three_dw(x3)
|
| 300 |
+
|
| 301 |
+
x4 = self.block_four(x3_dw)
|
| 302 |
+
x4_dw = self.block_four_dw(x4)
|
| 303 |
+
|
| 304 |
+
x5 = self.block_five(x4_dw)
|
| 305 |
+
# x5 = F.dropout3d(x5, p=0.5, training=True)
|
| 306 |
+
if self.has_dropout:
|
| 307 |
+
x5 = self.dropout(x5)
|
| 308 |
+
|
| 309 |
+
res = [x1, x2, x3, x4, x5]
|
| 310 |
+
|
| 311 |
+
return res
|
| 312 |
+
|
| 313 |
+
def decoder(self, features):
|
| 314 |
+
x1 = features[0]
|
| 315 |
+
x2 = features[1]
|
| 316 |
+
x3 = features[2]
|
| 317 |
+
x4 = features[3]
|
| 318 |
+
x5 = features[4]
|
| 319 |
+
|
| 320 |
+
x5_up = self.block_five_up(x5)
|
| 321 |
+
x5_up = x5_up + x4
|
| 322 |
+
|
| 323 |
+
x6 = self.block_six(x5_up)
|
| 324 |
+
x6_up = self.block_six_up(x6)
|
| 325 |
+
x6_up = x6_up + x3
|
| 326 |
+
|
| 327 |
+
x7 = self.block_seven(x6_up)
|
| 328 |
+
x7_up = self.block_seven_up(x7)
|
| 329 |
+
x7_up = x7_up + x2
|
| 330 |
+
|
| 331 |
+
x8 = self.block_eight(x7_up)
|
| 332 |
+
x8_up = self.block_eight_up(x8)
|
| 333 |
+
x8_up = x8_up + x1
|
| 334 |
+
x9 = self.block_nine(x8_up)
|
| 335 |
+
# x9 = F.dropout3d(x9, p=0.5, training=True)
|
| 336 |
+
if self.has_dropout:
|
| 337 |
+
x9 = self.dropout(x9)
|
| 338 |
+
out = self.out_conv(x9)
|
| 339 |
+
return out
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def forward(self, input, turnoff_drop=False):
|
| 343 |
+
if turnoff_drop:
|
| 344 |
+
has_dropout = self.has_dropout
|
| 345 |
+
self.has_dropout = False
|
| 346 |
+
features = self.encoder(input)
|
| 347 |
+
out = self.decoder(features)
|
| 348 |
+
if turnoff_drop:
|
| 349 |
+
self.has_dropout = has_dropout
|
| 350 |
+
return out
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
class ResVNet(nn.Module):
|
| 354 |
+
def __init__(self, n_channels=1, n_classes=2, n_filters=16, normalization='instancenorm', has_dropout=False):
|
| 355 |
+
super(ResVNet, self).__init__()
|
| 356 |
+
self.resencoder = resnet34()
|
| 357 |
+
self.has_dropout = has_dropout
|
| 358 |
+
|
| 359 |
+
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
|
| 360 |
+
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
|
| 361 |
+
|
| 362 |
+
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
| 363 |
+
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
|
| 364 |
+
|
| 365 |
+
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
| 366 |
+
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
|
| 367 |
+
|
| 368 |
+
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
| 369 |
+
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
|
| 370 |
+
|
| 371 |
+
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
|
| 372 |
+
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
|
| 373 |
+
|
| 374 |
+
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
|
| 375 |
+
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
|
| 376 |
+
|
| 377 |
+
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
|
| 378 |
+
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
|
| 379 |
+
|
| 380 |
+
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
|
| 381 |
+
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
|
| 385 |
+
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
if has_dropout:
|
| 389 |
+
self.dropout = nn.Dropout3d(p=0.5)
|
| 390 |
+
self.branchs = nn.ModuleList()
|
| 391 |
+
for i in range(1):
|
| 392 |
+
if has_dropout:
|
| 393 |
+
seq = nn.Sequential(
|
| 394 |
+
ConvBlock(1, n_filters, n_filters, normalization=normalization),
|
| 395 |
+
nn.Dropout3d(p=0.5),
|
| 396 |
+
nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
| 397 |
+
)
|
| 398 |
+
else:
|
| 399 |
+
seq = nn.Sequential(
|
| 400 |
+
ConvBlock(1, n_filters, n_filters, normalization=normalization),
|
| 401 |
+
nn.Conv3d(n_filters, n_classes, 1, padding=0)
|
| 402 |
+
)
|
| 403 |
+
self.branchs.append(seq)
|
| 404 |
+
|
| 405 |
+
def encoder(self, input):
|
| 406 |
+
x1 = self.block_one(input)
|
| 407 |
+
x1_dw = self.block_one_dw(x1)
|
| 408 |
+
|
| 409 |
+
x2 = self.block_two(x1_dw)
|
| 410 |
+
x2_dw = self.block_two_dw(x2)
|
| 411 |
+
|
| 412 |
+
x3 = self.block_three(x2_dw)
|
| 413 |
+
x3_dw = self.block_three_dw(x3)
|
| 414 |
+
|
| 415 |
+
x4 = self.block_four(x3_dw)
|
| 416 |
+
x4_dw = self.block_four_dw(x4)
|
| 417 |
+
|
| 418 |
+
x5 = self.block_five(x4_dw)
|
| 419 |
+
|
| 420 |
+
if self.has_dropout:
|
| 421 |
+
x5 = self.dropout(x5)
|
| 422 |
+
|
| 423 |
+
res = [x1, x2, x3, x4, x5]
|
| 424 |
+
|
| 425 |
+
return res
|
| 426 |
+
|
| 427 |
+
def decoder(self, features):
|
| 428 |
+
x1 = features[0]
|
| 429 |
+
x2 = features[1]
|
| 430 |
+
x3 = features[2]
|
| 431 |
+
x4 = features[3]
|
| 432 |
+
x5 = features[4]
|
| 433 |
+
|
| 434 |
+
x5_up = self.block_five_up(x5)
|
| 435 |
+
x5_up = x5_up + x4
|
| 436 |
+
|
| 437 |
+
x6 = self.block_six(x5_up)
|
| 438 |
+
x6_up = self.block_six_up(x6)
|
| 439 |
+
x6_up = x6_up + x3
|
| 440 |
+
|
| 441 |
+
x7 = self.block_seven(x6_up)
|
| 442 |
+
x7_up = self.block_seven_up(x7)
|
| 443 |
+
x7_up = x7_up + x2
|
| 444 |
+
|
| 445 |
+
x8 = self.block_eight(x7_up)
|
| 446 |
+
x8_up = self.block_eight_up(x8)
|
| 447 |
+
x8_up = x8_up + x1
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
x9 = self.block_nine(x8_up)
|
| 451 |
+
|
| 452 |
+
out = self.out_conv(x9)
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
return out
|
| 456 |
+
|
| 457 |
+
def forward(self, input, turnoff_drop=False):
|
| 458 |
+
if turnoff_drop:
|
| 459 |
+
has_dropout = self.has_dropout
|
| 460 |
+
self.has_dropout = False
|
| 461 |
+
features = self.resencoder(input)
|
| 462 |
+
out = self.decoder(features)
|
| 463 |
+
if turnoff_drop:
|
| 464 |
+
self.has_dropout = has_dropout
|
| 465 |
+
return out
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
__all__ = ['ResNet', 'resnet34']
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
| 472 |
+
"""3x3 convolution with padding"""
|
| 473 |
+
return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def conv3x3_bn_relu(in_planes, out_planes, stride=1):
|
| 477 |
+
return nn.Sequential(
|
| 478 |
+
conv3x3(in_planes, out_planes, stride),
|
| 479 |
+
nn.InstanceNorm3d(out_planes),
|
| 480 |
+
nn.ReLU()
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
class BasicBlock(nn.Module):
|
| 485 |
+
expansion = 1
|
| 486 |
+
|
| 487 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
| 488 |
+
groups=1, base_width=64, dilation=-1):
|
| 489 |
+
super(BasicBlock, self).__init__()
|
| 490 |
+
if groups != 1 or base_width != 64:
|
| 491 |
+
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
| 492 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
| 493 |
+
self.bn1 = nn.InstanceNorm3d(planes)
|
| 494 |
+
self.relu = nn.ReLU(inplace=True)
|
| 495 |
+
self.conv2 = conv3x3(planes, planes)
|
| 496 |
+
self.bn2 = nn.InstanceNorm3d(planes)
|
| 497 |
+
self.downsample = downsample
|
| 498 |
+
self.stride = stride
|
| 499 |
+
|
| 500 |
+
def forward(self, x):
|
| 501 |
+
residual = x
|
| 502 |
+
|
| 503 |
+
out = self.conv1(x)
|
| 504 |
+
out = self.bn1(out)
|
| 505 |
+
out = self.relu(out)
|
| 506 |
+
|
| 507 |
+
out = self.conv2(out)
|
| 508 |
+
out = self.bn2(out)
|
| 509 |
+
|
| 510 |
+
if self.downsample is not None:
|
| 511 |
+
residual = self.downsample(x)
|
| 512 |
+
|
| 513 |
+
out += residual
|
| 514 |
+
out = self.relu(out)
|
| 515 |
+
|
| 516 |
+
return out
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
class Bottleneck(nn.Module):
|
| 520 |
+
expansion = 4
|
| 521 |
+
|
| 522 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
| 523 |
+
groups=1, base_width=64, dilation=1):
|
| 524 |
+
super(Bottleneck, self).__init__()
|
| 525 |
+
width = int(planes * (base_width / 64.)) * groups
|
| 526 |
+
self.conv1 = nn.Conv3d(inplanes, width, kernel_size=1, bias=False)
|
| 527 |
+
self.bn1 = nn.InstanceNorm3d(width)
|
| 528 |
+
self.conv2 = nn.Conv3d(width, width, kernel_size=3, stride=stride, dilation=dilation,
|
| 529 |
+
padding=dilation, groups=groups, bias=False)
|
| 530 |
+
self.bn2 = nn.InstanceNorm3d(width)
|
| 531 |
+
self.conv3 = nn.Conv3d(width, planes * self.expansion, kernel_size=1, bias=False)
|
| 532 |
+
self.bn3 = nn.InstanceNorm3d(planes * self.expansion)
|
| 533 |
+
self.relu = nn.ReLU(inplace=True)
|
| 534 |
+
self.downsample = downsample
|
| 535 |
+
self.stride = stride
|
| 536 |
+
|
| 537 |
+
def forward(self, x):
|
| 538 |
+
residual = x
|
| 539 |
+
|
| 540 |
+
out = self.conv1(x)
|
| 541 |
+
out = self.bn1(out)
|
| 542 |
+
out = self.relu(out)
|
| 543 |
+
|
| 544 |
+
out = self.conv2(out)
|
| 545 |
+
out = self.bn2(out)
|
| 546 |
+
out = self.relu(out)
|
| 547 |
+
|
| 548 |
+
out = self.conv3(out)
|
| 549 |
+
out = self.bn3(out)
|
| 550 |
+
|
| 551 |
+
if self.downsample is not None:
|
| 552 |
+
residual = self.downsample(x)
|
| 553 |
+
|
| 554 |
+
out += residual
|
| 555 |
+
out = self.relu(out)
|
| 556 |
+
|
| 557 |
+
return out
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
class ResNet(nn.Module):
|
| 561 |
+
|
| 562 |
+
def __init__(self, block, layers, in_channel=1, width=1,
|
| 563 |
+
groups=1, width_per_group=64,
|
| 564 |
+
mid_dim=1024, low_dim=128,
|
| 565 |
+
avg_down=False, deep_stem=False,
|
| 566 |
+
head_type='mlp_head', layer4_dilation=1):
|
| 567 |
+
super(ResNet, self).__init__()
|
| 568 |
+
self.avg_down = avg_down
|
| 569 |
+
self.inplanes = 16 * width
|
| 570 |
+
self.base = int(16 * width)
|
| 571 |
+
self.groups = groups
|
| 572 |
+
self.base_width = width_per_group
|
| 573 |
+
|
| 574 |
+
mid_dim = self.base * 8 * block.expansion
|
| 575 |
+
|
| 576 |
+
if deep_stem:
|
| 577 |
+
self.conv1 = nn.Sequential(
|
| 578 |
+
conv3x3_bn_relu(in_channel, 32, stride=2),
|
| 579 |
+
conv3x3_bn_relu(32, 32, stride=1),
|
| 580 |
+
conv3x3(32, 64, stride=1)
|
| 581 |
+
)
|
| 582 |
+
else:
|
| 583 |
+
self.conv1 = nn.Conv3d(in_channel, self.inplanes, kernel_size=7, stride=1, padding=3, bias=False)
|
| 584 |
+
|
| 585 |
+
self.bn1 = nn.InstanceNorm3d(self.inplanes)
|
| 586 |
+
self.relu = nn.ReLU(inplace=True)
|
| 587 |
+
|
| 588 |
+
self.maxpool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1)
|
| 589 |
+
self.layer1 = self._make_layer(block, self.base*2, layers[0],stride=2)
|
| 590 |
+
self.layer2 = self._make_layer(block, self.base * 4, layers[1], stride=2)
|
| 591 |
+
self.layer3 = self._make_layer(block, self.base * 8, layers[2], stride=2)
|
| 592 |
+
if layer4_dilation == 1:
|
| 593 |
+
self.layer4 = self._make_layer(block, self.base * 16, layers[3], stride=2)
|
| 594 |
+
elif layer4_dilation == 2:
|
| 595 |
+
self.layer4 = self._make_layer(block, self.base * 16, layers[3], stride=1, dilation=2)
|
| 596 |
+
else:
|
| 597 |
+
raise NotImplementedError
|
| 598 |
+
self.avgpool = nn.AvgPool3d(7, stride=1)
|
| 599 |
+
|
| 600 |
+
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
|
| 601 |
+
downsample = None
|
| 602 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 603 |
+
if self.avg_down:
|
| 604 |
+
downsample = nn.Sequential(
|
| 605 |
+
nn.AvgPool3d(kernel_size=stride, stride=stride),
|
| 606 |
+
nn.Conv3d(self.inplanes, planes * block.expansion,
|
| 607 |
+
kernel_size=1, stride=1, bias=False),
|
| 608 |
+
nn.InstanceNorm3d(planes * block.expansion),
|
| 609 |
+
)
|
| 610 |
+
else:
|
| 611 |
+
downsample = nn.Sequential(
|
| 612 |
+
nn.Conv3d(self.inplanes, planes * block.expansion,
|
| 613 |
+
kernel_size=1, stride=stride, bias=False),
|
| 614 |
+
nn.InstanceNorm3d(planes * block.expansion),
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
layers = [block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, dilation)]
|
| 618 |
+
self.inplanes = planes * block.expansion
|
| 619 |
+
for _ in range(1, blocks):
|
| 620 |
+
layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=dilation))
|
| 621 |
+
|
| 622 |
+
return nn.Sequential(*layers)
|
| 623 |
+
|
| 624 |
+
def forward(self, x):
|
| 625 |
+
x = self.conv1(x)
|
| 626 |
+
x = self.bn1(x)
|
| 627 |
+
x = self.relu(x)
|
| 628 |
+
#c2 = self.maxpool(x)
|
| 629 |
+
c2 = self.layer1(x)
|
| 630 |
+
c3 = self.layer2(c2)
|
| 631 |
+
c4 = self.layer3(c3)
|
| 632 |
+
c5 = self.layer4(c4)
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
return [x,c2,c3,c4,c5]
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
def resnet34(**kwargs):
|
| 639 |
+
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
def label_rescale(image_label, w_ori, h_ori, z_ori, flag):
|
| 643 |
+
w_ori, h_ori, z_ori = int(w_ori), int(h_ori), int(z_ori)
|
| 644 |
+
# resize label map (int)
|
| 645 |
+
if flag == 'trilinear':
|
| 646 |
+
teeth_ids = np.unique(image_label)
|
| 647 |
+
image_label_ori = np.zeros((w_ori, h_ori, z_ori))
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
image_label = torch.from_numpy(image_label).cuda(0)
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
# image_label = torch.from_numpy(image_label).to("cpu")
|
| 654 |
+
for label_id in range(len(teeth_ids)):
|
| 655 |
+
image_label_bn = (image_label == teeth_ids[label_id]).float()
|
| 656 |
+
image_label_bn = image_label_bn[None, None, :, :, :]
|
| 657 |
+
image_label_bn = torch.nn.functional.interpolate(image_label_bn, size=(w_ori, h_ori, z_ori),
|
| 658 |
+
mode='trilinear', align_corners=False)
|
| 659 |
+
image_label_bn = image_label_bn[0, 0, :, :, :]
|
| 660 |
+
image_label_bn = image_label_bn.cpu().data.numpy()
|
| 661 |
+
image_label_ori[image_label_bn > 0.5] = teeth_ids[label_id]
|
| 662 |
+
image_label = image_label_ori
|
| 663 |
+
|
| 664 |
+
if flag == 'nearest':
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
image_label = torch.from_numpy(image_label).cuda(0)
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
# image_label = torch.from_numpy(image_label).to("cpu")
|
| 671 |
+
image_label = image_label[None, None, :, :, :].float()
|
| 672 |
+
image_label = torch.nn.functional.interpolate(image_label, size=(w_ori, h_ori, z_ori), mode='nearest')
|
| 673 |
+
image_label = image_label[0, 0, :, :, :].cpu().data.numpy()
|
| 674 |
+
return image_label
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
def img_crop(image_bbox):
|
| 678 |
+
if image_bbox.sum() > 0:
|
| 679 |
+
|
| 680 |
+
x_min = np.nonzero(image_bbox)[0].min() - 8
|
| 681 |
+
x_max = np.nonzero(image_bbox)[0].max() + 8
|
| 682 |
+
|
| 683 |
+
y_min = np.nonzero(image_bbox)[1].min() - 16
|
| 684 |
+
y_max = np.nonzero(image_bbox)[1].max() + 16
|
| 685 |
+
|
| 686 |
+
z_min = np.nonzero(image_bbox)[2].min() - 16
|
| 687 |
+
z_max = np.nonzero(image_bbox)[2].max() + 16
|
| 688 |
+
|
| 689 |
+
if x_min < 0:
|
| 690 |
+
x_min = 0
|
| 691 |
+
if y_min < 0:
|
| 692 |
+
y_min = 0
|
| 693 |
+
if z_min < 0:
|
| 694 |
+
z_min = 0
|
| 695 |
+
if x_max > image_bbox.shape[0]:
|
| 696 |
+
x_max = image_bbox.shape[0]
|
| 697 |
+
if y_max > image_bbox.shape[1]:
|
| 698 |
+
y_max = image_bbox.shape[1]
|
| 699 |
+
if z_max > image_bbox.shape[2]:
|
| 700 |
+
z_max = image_bbox.shape[2]
|
| 701 |
+
|
| 702 |
+
if (x_max - x_min) % 16 != 0:
|
| 703 |
+
x_max -= (x_max - x_min) % 16
|
| 704 |
+
if (y_max - y_min) % 16 != 0:
|
| 705 |
+
y_max -= (y_max - y_min) % 16
|
| 706 |
+
if (z_max - z_min) % 16 != 0:
|
| 707 |
+
z_max -= (z_max - z_min) % 16
|
| 708 |
+
|
| 709 |
+
if image_bbox.sum() == 0:
|
| 710 |
+
x_min, x_max, y_min, y_max, z_min, z_max = -1, image_bbox.shape[0], 0, image_bbox.shape[1], 0, image_bbox.shape[
|
| 711 |
+
2]
|
| 712 |
+
return x_min, x_max, y_min, y_max, z_min, z_max
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
def roi_extraction(image, net_roi, ids):
|
| 716 |
+
w, h, d = image.shape
|
| 717 |
+
# roi binary segmentation parameters, the input spacing is 0.4 mm
|
| 718 |
+
print('---run the roi binary segmentation.')
|
| 719 |
+
|
| 720 |
+
stride_xy = 32
|
| 721 |
+
stride_z = 16
|
| 722 |
+
patch_size_roi_stage = (112, 112, 80)
|
| 723 |
+
|
| 724 |
+
label_roi = roi_detection(net_roi, image[0:w:2, 0:h:2, 0:d:2], stride_xy, stride_z,
|
| 725 |
+
patch_size_roi_stage) # (400,400,200)
|
| 726 |
+
print(label_roi.shape, np.max(label_roi))
|
| 727 |
+
label_roi = label_rescale(label_roi, w, h, d, 'trilinear') # (800,800,400)
|
| 728 |
+
|
| 729 |
+
label_roi = morphology.remove_small_objects(label_roi.astype(bool), 5000, connectivity=3).astype(float)
|
| 730 |
+
|
| 731 |
+
label_roi = ndimage.grey_dilation(label_roi, size=(5, 5, 5))
|
| 732 |
+
|
| 733 |
+
label_roi = morphology.remove_small_objects(label_roi.astype(bool), 400000, connectivity=3).astype(
|
| 734 |
+
float)
|
| 735 |
+
|
| 736 |
+
label_roi = ndimage.grey_erosion(label_roi, size=(5, 5, 5))
|
| 737 |
+
|
| 738 |
+
# crop image
|
| 739 |
+
x_min, x_max, y_min, y_max, z_min, z_max = img_crop(label_roi)
|
| 740 |
+
if x_min == -1: # non-foreground label
|
| 741 |
+
whole_label = np.zeros((w, h, d))
|
| 742 |
+
return whole_label
|
| 743 |
+
image = image[x_min:x_max, y_min:y_max, z_min:z_max]
|
| 744 |
+
print("image shape(after roi): ", image.shape)
|
| 745 |
+
|
| 746 |
+
return image, x_min, x_max, y_min, y_max, z_min, z_max
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
def roi_detection(net, image, stride_xy, stride_z, patch_size):
|
| 750 |
+
w, h, d = image.shape # (400,400,200)
|
| 751 |
+
|
| 752 |
+
# if the size of image is less than patch_size, then padding it
|
| 753 |
+
add_pad = False
|
| 754 |
+
if w < patch_size[0]:
|
| 755 |
+
w_pad = patch_size[0] - w
|
| 756 |
+
add_pad = True
|
| 757 |
+
else:
|
| 758 |
+
w_pad = 0
|
| 759 |
+
if h < patch_size[1]:
|
| 760 |
+
h_pad = patch_size[1] - h
|
| 761 |
+
add_pad = True
|
| 762 |
+
else:
|
| 763 |
+
h_pad = 0
|
| 764 |
+
if d < patch_size[2]:
|
| 765 |
+
d_pad = patch_size[2] - d
|
| 766 |
+
add_pad = True
|
| 767 |
+
else:
|
| 768 |
+
d_pad = 0
|
| 769 |
+
wl_pad, wr_pad = w_pad // 2, w_pad - w_pad // 2
|
| 770 |
+
hl_pad, hr_pad = h_pad // 2, h_pad - h_pad // 2
|
| 771 |
+
dl_pad, dr_pad = d_pad // 2, d_pad - d_pad // 2
|
| 772 |
+
if add_pad:
|
| 773 |
+
image = np.pad(image, [(wl_pad, wr_pad), (hl_pad, hr_pad), (dl_pad, dr_pad)], mode='constant',
|
| 774 |
+
constant_values=0)
|
| 775 |
+
ww, hh, dd = image.shape
|
| 776 |
+
|
| 777 |
+
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1 # 2
|
| 778 |
+
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1 # 2
|
| 779 |
+
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1 # 2
|
| 780 |
+
score_map = np.zeros((2,) + image.shape).astype(np.float32)
|
| 781 |
+
cnt = np.zeros(image.shape).astype(np.float32)
|
| 782 |
+
count = 0
|
| 783 |
+
for x in range(0, sx):
|
| 784 |
+
xs = min(stride_xy * x, ww - patch_size[0])
|
| 785 |
+
for y in range(0, sy):
|
| 786 |
+
ys = min(stride_xy * y, hh - patch_size[1])
|
| 787 |
+
for z in range(0, sz):
|
| 788 |
+
zs = min(stride_z * z, dd - patch_size[2])
|
| 789 |
+
test_patch = image[xs:xs + patch_size[0], ys:ys + patch_size[1],
|
| 790 |
+
zs:zs + patch_size[2]]
|
| 791 |
+
test_patch = np.expand_dims(np.expand_dims(test_patch, axis=0), axis=0).astype(
|
| 792 |
+
np.float32)
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
test_patch = torch.from_numpy(test_patch).cuda(0)
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
# test_patch = torch.from_numpy(test_patch).to("cpu")
|
| 799 |
+
with torch.no_grad():
|
| 800 |
+
y1 = net(test_patch) # (1,2,256,256,160)
|
| 801 |
+
y = F.softmax(y1, dim=1) # (1,2,256,256,160)
|
| 802 |
+
y = y.cpu().data.numpy()
|
| 803 |
+
y = y[0, :, :, :, :] # (2,256,256,160)
|
| 804 |
+
score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \
|
| 805 |
+
= score_map[:, xs:xs + patch_size[0], ys:ys + patch_size[1],
|
| 806 |
+
zs:zs + patch_size[2]] + y # (2,400,400,200)
|
| 807 |
+
cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] \
|
| 808 |
+
= cnt[xs:xs + patch_size[0], ys:ys + patch_size[1], zs:zs + patch_size[2]] + 1 # (400,400,200)
|
| 809 |
+
count = count + 1
|
| 810 |
+
score_map = score_map / np.expand_dims(cnt, axis=0)
|
| 811 |
+
|
| 812 |
+
label_map = np.argmax(score_map, axis=0) # (400,400,200),0/1
|
| 813 |
+
if add_pad:
|
| 814 |
+
label_map = label_map[wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d]
|
| 815 |
+
score_map = score_map[:, wl_pad:wl_pad + w, hl_pad:hl_pad + h, dl_pad:dl_pad + d]
|
| 816 |
+
return label_map
|
| 817 |
+
|
| 818 |
+
|
| 819 |
+
def test_single_case_array(model_array, image=None, stride_xy=None, stride_z=None, patch_size=None, num_classes=1):
|
| 820 |
+
w, h, d = image.shape
|
| 821 |
+
|
| 822 |
+
# if the size of image is less than patch_size, then padding it
|
| 823 |
+
add_pad = False
|
| 824 |
+
if w < patch_size[0]:
|
| 825 |
+
w_pad = patch_size[0]-w
|
| 826 |
+
add_pad = True
|
| 827 |
+
else:
|
| 828 |
+
w_pad = 0
|
| 829 |
+
if h < patch_size[1]:
|
| 830 |
+
h_pad = patch_size[1]-h
|
| 831 |
+
add_pad = True
|
| 832 |
+
else:
|
| 833 |
+
h_pad = 0
|
| 834 |
+
if d < patch_size[2]:
|
| 835 |
+
d_pad = patch_size[2]-d
|
| 836 |
+
add_pad = True
|
| 837 |
+
else:
|
| 838 |
+
d_pad = 0
|
| 839 |
+
wl_pad, wr_pad = w_pad//2,w_pad-w_pad//2
|
| 840 |
+
hl_pad, hr_pad = h_pad//2,h_pad-h_pad//2
|
| 841 |
+
dl_pad, dr_pad = d_pad//2,d_pad-d_pad//2
|
| 842 |
+
if add_pad:
|
| 843 |
+
image = np.pad(image, [(wl_pad,wr_pad),(hl_pad,hr_pad), (dl_pad, dr_pad)], mode='constant', constant_values=0)
|
| 844 |
+
|
| 845 |
+
ww,hh,dd = image.shape
|
| 846 |
+
|
| 847 |
+
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1
|
| 848 |
+
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1
|
| 849 |
+
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1
|
| 850 |
+
score_map = np.zeros((num_classes, ) + image.shape).astype(np.float32)
|
| 851 |
+
cnt = np.zeros(image.shape).astype(np.float32)
|
| 852 |
+
|
| 853 |
+
for x in range(0, sx):
|
| 854 |
+
xs = min(stride_xy*x, ww-patch_size[0])
|
| 855 |
+
for y in range(0, sy):
|
| 856 |
+
ys = min(stride_xy * y,hh-patch_size[1])
|
| 857 |
+
for z in range(0, sz):
|
| 858 |
+
zs = min(stride_z * z, dd-patch_size[2])
|
| 859 |
+
test_patch = image[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]]
|
| 860 |
+
test_patch = np.expand_dims(np.expand_dims(test_patch,axis=0),axis=0).astype(np.float32)
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
test_patch = torch.from_numpy(test_patch).cuda()
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
# test_patch = torch.from_numpy(test_patch).to("cpu")
|
| 867 |
+
for model in model_array:
|
| 868 |
+
output = model(test_patch)
|
| 869 |
+
y_temp = F.softmax(output, dim=1)
|
| 870 |
+
y_temp = y_temp.cpu().data.numpy()
|
| 871 |
+
y += y_temp[0,:,:,:,:]
|
| 872 |
+
y /= len(model_array)
|
| 873 |
+
score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
|
| 874 |
+
= score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + y
|
| 875 |
+
cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
|
| 876 |
+
= cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + 1
|
| 877 |
+
score_map = score_map/np.expand_dims(cnt,axis=0)
|
| 878 |
+
|
| 879 |
+
label_map = np.argmax(score_map, axis = 0)
|
| 880 |
+
if add_pad:
|
| 881 |
+
label_map = label_map[wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
|
| 882 |
+
score_map = score_map[:,wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
|
| 883 |
+
return label_map, score_map
|
| 884 |
+
|
| 885 |
+
def calculate_metric_percase(pred, gt):
|
| 886 |
+
dice = metric.binary.dc(pred, gt)
|
| 887 |
+
jc = metric.binary.jc(pred, gt)
|
| 888 |
+
hd = metric.binary.hd95(pred, gt)
|
| 889 |
+
asd = metric.binary.asd(pred, gt)
|
| 890 |
+
|
| 891 |
+
return dice, jc, hd, asd
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
class RailNetSystem(nn.Module, PyTorchModelHubMixin):
|
| 895 |
+
def __init__(self, n_channels: int, n_classes: int, normalization: str):
|
| 896 |
+
super().__init__()
|
| 897 |
+
|
| 898 |
+
self.num_classes = 2
|
| 899 |
+
|
| 900 |
+
|
| 901 |
+
self.net_roi = VNet_roi(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=False).cuda()
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
# self.net_roi = VNet_roi(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=False).to("cpu")
|
| 905 |
+
|
| 906 |
+
self.model_array = []
|
| 907 |
+
for i in range(4):
|
| 908 |
+
if i < 2:
|
| 909 |
+
|
| 910 |
+
|
| 911 |
+
model = VNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).cuda()
|
| 912 |
+
|
| 913 |
+
|
| 914 |
+
# model = VNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).to("cpu")
|
| 915 |
+
else:
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
model = ResVNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).cuda()
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
# model = ResVNet(n_channels = n_channels, n_classes = n_classes, normalization = normalization, has_dropout=True).to("cpu")
|
| 922 |
+
self.model_array.append(model)
|
| 923 |
+
|
| 924 |
+
def load_weights(self, weight_dir=".", from_hub=False, repo_id=None):
|
| 925 |
+
def load(file_name):
|
| 926 |
+
if from_hub:
|
| 927 |
+
return hf_hub_download(repo_id=repo_id, filename=f"model weights/{file_name}")
|
| 928 |
+
else:
|
| 929 |
+
return os.path.join(weight_dir, "model weights", file_name)
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
# self.net_roi.load_state_dict(torch.load(os.path.join(weight_dir, "model weights", "roi_best_model.pth"), map_location="cuda", weights_only=True))
|
| 933 |
+
|
| 934 |
+
|
| 935 |
+
# self.net_roi.load_state_dict(torch.load(os.path.join(weight_dir, "model weights", "roi_best_model.pth"), map_location="cpu", weights_only=True))
|
| 936 |
+
self.net_roi.load_state_dict(torch.load(load("roi_best_model.pth"), map_location="cuda", weights_only=True))
|
| 937 |
+
self.net_roi.eval()
|
| 938 |
+
|
| 939 |
+
model_files = [
|
| 940 |
+
"rail_0_iter_7995_best.pth",
|
| 941 |
+
"rail_1_iter_7995_best.pth",
|
| 942 |
+
"rail_2_iter_7995_best.pth",
|
| 943 |
+
"rail_3_iter_7995_best.pth",
|
| 944 |
+
]
|
| 945 |
+
for i, file in enumerate(model_files):
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
# self.model_array[i].load_state_dict(torch.load(os.path.join(weight_dir, "model weights", file), map_location="cuda", weights_only=True))
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
# self.model_array[i].load_state_dict(torch.load(os.path.join(weight_dir, "model weights", file), map_location="cpu", weights_only=True))
|
| 952 |
+
self.model_array[i].load_state_dict(torch.load(load(file), map_location="cuda", weights_only=True))
|
| 953 |
+
self.model_array[i].eval()
|
| 954 |
+
|
| 955 |
+
def forward(self, image, label, save_path="./output", name="case"):
|
| 956 |
+
if not os.path.exists(save_path):
|
| 957 |
+
os.makedirs(save_path)
|
| 958 |
+
nib.save(nib.Nifti1Image(image.astype(np.float32), np.eye(4)), os.path.join(save_path, f"{name}_img.nii.gz"))
|
| 959 |
+
|
| 960 |
+
w, h, d = image.shape
|
| 961 |
+
|
| 962 |
+
image, x_min, x_max, y_min, y_max, z_min, z_max = roi_extraction(image, self.net_roi, name)
|
| 963 |
+
|
| 964 |
+
prediction, _ = test_single_case_array(self.model_array, image, stride_xy=64, stride_z=32, patch_size=(112, 112, 80), num_classes=self.num_classes)
|
| 965 |
+
|
| 966 |
+
prediction = morphology.remove_small_objects(prediction.astype(bool), 3000, connectivity=3).astype(float)
|
| 967 |
+
|
| 968 |
+
new_prediction = np.zeros((w, h, d))
|
| 969 |
+
new_prediction[x_min:x_max, y_min:y_max, z_min:z_max] = prediction
|
| 970 |
+
|
| 971 |
+
dice, jc, hd, asd = calculate_metric_percase(new_prediction, label[:])
|
| 972 |
+
|
| 973 |
+
nib.save(nib.Nifti1Image(new_prediction.astype(np.float32), np.eye(4)), os.path.join(save_path, f"{name}_pred.nii.gz"))
|
| 974 |
+
|
| 975 |
+
return new_prediction, dice, jc, hd, asd
|