Tournesol-Saturday commited on
Commit
d3a15f1
·
verified ·
1 Parent(s): 56f16b8

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -0
app.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import h5py
3
+ import numpy as np
4
+ import gradio as gr
5
+ import plotly.graph_objects as go
6
+ from railnet_model import RailNetSystem
7
+
8
+ from huggingface_hub import hf_hub_download
9
+
10
+ os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
11
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
12
+
13
+ model = RailNetSystem.from_pretrained("Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image").cuda()
14
+
15
+ model.load_weights(from_hub=True, repo_id="Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image")
16
+
17
+ def render_plotly_volume(pred, x_eye=1.25, y_eye=1.25, z_eye=1.25):
18
+ downsample_factor = 2
19
+ pred_ds = pred[::downsample_factor, ::downsample_factor, ::downsample_factor]
20
+
21
+ fig = go.Figure(data=go.Volume(
22
+ x=np.repeat(np.arange(pred_ds.shape[0]), pred_ds.shape[1] * pred_ds.shape[2]),
23
+ y=np.tile(np.repeat(np.arange(pred_ds.shape[1]), pred_ds.shape[2]), pred_ds.shape[0]),
24
+ z=np.tile(np.arange(pred_ds.shape[2]), pred_ds.shape[0] * pred_ds.shape[1]),
25
+ value=pred_ds.flatten(),
26
+ isomin=0.5,
27
+ isomax=1.0,
28
+ opacity=0.1,
29
+ surface_count=1,
30
+ colorscale=[[0, 'rgb(255, 0, 0)'], [1, 'rgb(255, 0, 0)']],
31
+ showscale=False
32
+ ))
33
+
34
+ fig.update_layout(
35
+ scene=dict(
36
+ xaxis=dict(visible=False),
37
+ yaxis=dict(visible=False),
38
+ zaxis=dict(visible=False),
39
+ camera=dict(eye=dict(x=x_eye, y=y_eye, z=z_eye))
40
+ ),
41
+ margin=dict(l=0, r=0, b=0, t=0)
42
+ )
43
+ return fig
44
+
45
+ def handle_example(filename):
46
+ repo_id = "Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image"
47
+ h5_path = hf_hub_download(repo_id=repo_id, filename=f"example_input_file/{filename}")
48
+
49
+ with h5py.File(h5_path, "r") as f:
50
+ image = f["image"][:]
51
+ label = f["label"][:]
52
+
53
+ name = filename.replace(".h5", "")
54
+ pred, dice, jc, hd, asd = model(image, label, "./output", name)
55
+
56
+ fig = render_plotly_volume(pred)
57
+
58
+ img_path = f"./output/{name}_img.nii.gz"
59
+ pred_path = f"./output/{name}_pred.nii.gz"
60
+
61
+ metrics = f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}"
62
+
63
+ return metrics, pred, fig, img_path, pred_path
64
+
65
+ def clear_all():
66
+ return "", None, None, None, None
67
+
68
+ with gr.Blocks() as demo:
69
+ gr.HTML("<div style='text-align: center; font-size: 22px; font-weight: bold;'>🦷 Demo of RailNet: A CBCT Tooth Segmentation System</div>")
70
+ gr.HTML("<div style='text-align: center; font-size: 15px'>✅ Steps: Select a CBCT example file (.h5) → Automatic inference and metrics display → View 3D segmentation result (Mouse drag and scroll wheel zooming)</div>")
71
+
72
+ gr.HTML("""
73
+ <style>
74
+ .code-style {
75
+ font-family: monospace;
76
+ background-color: #2f363d;
77
+ color: #ffffff;
78
+ padding: 2px 6px;
79
+ border-radius: 4px;
80
+ font-size: 90%;
81
+ }
82
+ </style>
83
+
84
+ <div style='font-size: 15px; font-weight: bold;'>
85
+ 📂 Step 1: Select a <span class='code-style'>.h5</span> example file from the <span class='code-style'>example_input_file</span> folder in our
86
+ <a href='https://huggingface.co/Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image' target='_blank' style='text-decoration: none; color: #1f6feb; font-weight: bold;'>
87
+ Hugging Face model
88
+ </a> repository.
89
+ </div>
90
+ """)
91
+
92
+ example_files = ["CBCT_01.h5", "CBCT_02.h5", "CBCT_03.h5", "CBCT_04.h5"]
93
+ dropdown = gr.Dropdown(choices=example_files, label="Example File", value=example_files[0])
94
+
95
+
96
+ with gr.Row():
97
+ clear_btn = gr.Button("清除", variant="secondary")
98
+ submit_btn = gr.Button("提交", variant="primary")
99
+
100
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📊 Step 2: Metrics (Dice, Jaccard, 95HD, ASD)</div>")
101
+ result_text = gr.Textbox()
102
+ hidden_pred = gr.State(value=None)
103
+
104
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>👁️ Step 3: 3D Visualisation</div>")
105
+ plot_output = gr.Plot()
106
+
107
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>⬇️ Step 4: Download <span class='code-style'>NIfTI</span> files for accurate 1:1 visualization using <span class='code-style'>ITK-SNAP</span> software</div>")
108
+ with gr.Row():
109
+ hidden_img_file = gr.File(label="Download Original Image", interactive=False)
110
+ hidden_pred_file = gr.File(label="Download Segmentation Result", interactive=False)
111
+
112
+ submit_btn.click(
113
+ fn=handle_example,
114
+ inputs=[dropdown],
115
+ outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
116
+ )
117
+
118
+ clear_btn.click(
119
+ fn=clear_all,
120
+ inputs=[],
121
+ outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
122
+ )
123
+
124
+ demo.launch()