File size: 1,521 Bytes
488d025
d55a6ac
 
cdd78db
 
 
 
 
 
d55a6ac
 
 
 
 
 
 
488d025
 
a663e78
488d025
 
135593c
488d025
 
 
 
 
 
a663e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
'''from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
import gradio as grad
import ast

#mdl_name = "deepset/roberta-base-squad2"
#my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

mdl_name = "distilbert-base-cased-distilled-squad"
my_pipeline = pipeline('question-answering', model=mdl_name,tokenizer=mdl_name)

def answer_question(question,context):
    text= "{"+"'question': '"+question+"','context': '"+context+"'}"
    
    di=ast.literal_eval(text)
    response = my_pipeline(di)
    return response
grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
'''
''' 
from transformers import pipeline
import gradio as grad
mdl_name = "VietAI/envit5-translation"
opus_translator = pipeline("translation", model=mdl_name)

def translate(text):
    
    response = opus_translator(text)
    return response
grad.Interface(translate, inputs=["text",], outputs="text").launch()
'''

#5.11

from transformers import GPT2LMHeadModel,GPT2Tokenizer
import gradio as grad

mdl = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')

def generate(starting_text):
    tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
    gpt2_tensors = mdl.generate(tkn_ids)
    response = gpt2_tensors
    return response
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
out=grad.Textbox(lines=1, label="Generated Tensors")
grad.Interface(generate, inputs=txt, outputs=out).launch()