Spaces:
Running
Running
File size: 1,876 Bytes
ce13f7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1XblbxoRxB4XOHixjGij789FPD9KjKdhi
"""
import os
import PyPDF2
import gradio as gr
from langchain_groq.chat_models import ChatGroq
# Set Groq API key securely
GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Fetch from environment variables
# Ensure API key is available
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY is not set. Add it in Hugging Face Secrets.")
# Initialize LLM (Mistral-8x7B)
llm = ChatGroq(model_name="mixtral-8x7b-32768")
def extract_text_from_pdf(pdf_file):
"""Extract text from a PDF file."""
text = ""
reader = PyPDF2.PdfReader(pdf_file)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
def summarize_text(text):
"""Summarize the text"""
prompt = f"Summarize the following document:\n\n{text[:10000]}" # Limit input size
response = llm.predict(prompt)
return response
def process_pdf(file):
"""Extract text and summarize PDF using Mistral-8x7B."""
if file is None:
return "No file uploaded."
# Read file bytes and process it using PyPDF2
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
# Limit text size for API efficiency
text = text[:10000] if len(text) > 10000 else text
# Summarize
summary = summarize_text(text)
return summary
# Create Gradio Interface
interface = gr.Interface(
fn=process_pdf,
inputs=gr.File(label="Upload a PDF"),
outputs="text",
title="📄 PDF Summarizer",
description="Upload a PDF file and get a summary"
)
# Run the app
interface.launch() |