Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1XblbxoRxB4XOHixjGij789FPD9KjKdhi
|
8 |
+
"""
|
9 |
+
|
10 |
+
import os
|
11 |
+
import pdfplumber
|
12 |
+
import gradio as gr
|
13 |
+
from langchain_groq.chat_models import ChatGroq
|
14 |
+
|
15 |
+
# Set Groq API key securely
|
16 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Fetch from environment variables
|
17 |
+
if not GROQ_API_KEY:
|
18 |
+
raise ValueError("GROQ_API_KEY is not set. Add it in Hugging Face Secrets.")
|
19 |
+
|
20 |
+
# Initialize LLM (Mistral-8x7B)
|
21 |
+
llm = ChatGroq(model_name="mixtral-8x7b-32768")
|
22 |
+
|
23 |
+
def extract_text_from_pdf(pdf_file):
|
24 |
+
"""Extracts clean text from a text-based PDF while handling edge cases."""
|
25 |
+
text = ""
|
26 |
+
try:
|
27 |
+
with pdfplumber.open(pdf_file) as pdf:
|
28 |
+
for page in pdf.pages:
|
29 |
+
page_text = page.extract_text()
|
30 |
+
if page_text:
|
31 |
+
text += page_text.strip() + "\n\n" # Keep formatting clean
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error extracting text: {str(e)}"
|
34 |
+
|
35 |
+
if not text.strip():
|
36 |
+
return "⚠️ No readable text found. This might be a scanned or image-based PDF."
|
37 |
+
|
38 |
+
return text.strip()
|
39 |
+
|
40 |
+
def summarize_text(text, length, style):
|
41 |
+
"""Summarizes extracted text using Mistral-8x7B with structured formatting."""
|
42 |
+
prompt = (
|
43 |
+
f"""
|
44 |
+
Read the following document and summarize it in {style.lower()} format.
|
45 |
+
Keep the summary {length.lower()}.
|
46 |
+
Follow this structured reasoning:
|
47 |
+
1. Identify key sections & main topics.
|
48 |
+
2. Extract essential points from each section.
|
49 |
+
3. Remove redundant information.
|
50 |
+
4. Ensure accuracy without hallucination.
|
51 |
+
|
52 |
+
Document:
|
53 |
+
{text[:10000]} # Limit input to 10,000 characters for efficiency
|
54 |
+
"""
|
55 |
+
)
|
56 |
+
response = llm.predict(prompt)
|
57 |
+
return response.strip()
|
58 |
+
|
59 |
+
def process_pdf(file, length, style):
|
60 |
+
"""Extracts text and summarizes PDF with customization options."""
|
61 |
+
if not file:
|
62 |
+
return "⚠️ No file uploaded. Please upload a PDF."
|
63 |
+
|
64 |
+
text = extract_text_from_pdf(file.name)
|
65 |
+
if text.startswith("⚠️") or text.startswith("Error"):
|
66 |
+
return text # Return error messages directly
|
67 |
+
|
68 |
+
return summarize_text(text, length, style)
|
69 |
+
|
70 |
+
# Create Gradio Interface
|
71 |
+
interface = gr.Interface(
|
72 |
+
fn=process_pdf,
|
73 |
+
inputs=[
|
74 |
+
gr.File(label="📄 Upload a PDF"),
|
75 |
+
gr.Radio(["Short", "Medium", "Long"], label="📏 Summary Length", value="Medium"),
|
76 |
+
gr.Radio(["Bullets", "Key Takeaways", "Concise Paragraph"], label="📌 Summary Style", value="Key Takeaways"),
|
77 |
+
],
|
78 |
+
outputs="text",
|
79 |
+
title="📄 PDF Summarizer (Text-Based PDFs Only)",
|
80 |
+
description="Upload a PDF file (text-based only) and get a structured summary. Not for scanned/image PDFs.",
|
81 |
+
)
|
82 |
+
|
83 |
+
# Run the app
|
84 |
+
interface.launch()
|