Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,50 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
tokenizer = models[0].tokenizer
|
6 |
|
7 |
-
|
8 |
-
messages = [
|
9 |
-
|
10 |
-
"role": "
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
]
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
averaged_text = ""
|
26 |
-
for i in range(min(len(response) for response in responses)):
|
27 |
-
token_counts = {}
|
28 |
-
for response in responses:
|
29 |
-
token = response[i]
|
30 |
-
token_counts[token] = token_counts.get(token, 0) + 1
|
31 |
-
most_frequent_tokens = sorted(token_counts.items(), key=lambda x: x[1], reverse=True)
|
32 |
-
averaged_token = most_frequent_tokens[0][0] # Choose the most frequent token
|
33 |
-
averaged_text += averaged_token
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
def load_models():
|
6 |
+
return [
|
7 |
+
pipeline(
|
8 |
+
"text-generation",
|
9 |
+
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
10 |
+
torch_dtype=torch.bfloat16,
|
11 |
+
device_map="auto",
|
12 |
+
)
|
13 |
+
for _ in range(3)
|
14 |
+
]
|
15 |
+
|
16 |
+
models = load_models()
|
17 |
tokenizer = models[0].tokenizer
|
18 |
|
19 |
+
def generate_text(prompt):
|
20 |
+
messages = [
|
21 |
+
{"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate. Use pirate vocabulary and mannerisms in your replies."},
|
22 |
+
{"role": "user", "content": prompt},
|
23 |
+
]
|
24 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
25 |
+
|
26 |
+
responses = []
|
27 |
+
for model in models:
|
28 |
+
outputs = model(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
29 |
+
response = outputs[0]["generated_text"]
|
30 |
+
responses.append(response)
|
31 |
|
32 |
+
averaged_text = ""
|
33 |
+
for i in range(min(len(response) for response in responses)):
|
34 |
+
token_counts = {}
|
35 |
+
for response in responses:
|
36 |
+
token = response[i]
|
37 |
+
token_counts[token] = token_counts.get(token, 0) + 1
|
38 |
+
most_frequent_tokens = sorted(token_counts.items(), key=lambda x: x[1], reverse=True)
|
39 |
+
averaged_token = most_frequent_tokens[0][0] # Choose the most frequent token
|
40 |
+
averaged_text += averaged_token
|
41 |
|
42 |
+
return averaged_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
iface = gr.Interface(
|
45 |
+
generate_text,
|
46 |
+
[gr.Textbox(lines=2, label="Enter your prompt")],
|
47 |
+
"textbox",
|
48 |
+
title="Pirate Chatbot",
|
49 |
+
)
|
50 |
+
iface.launch()
|