TuringsSolutions commited on
Commit
b743c54
·
verified ·
1 Parent(s): 63f04e8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import pipeline, AutoTokenizer
3
+
4
+ def load_model():
5
+ return pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
6
+
7
+ models = [load_model() for _ in range(3)]
8
+ tokenizer = models[0].tokenizer
9
+
10
+ # Enhanced prompt engineering (unchanged)
11
+ messages = [
12
+ {
13
+ "role": "system",
14
+ "content": "You are a friendly chatbot who always responds in the style of a pirate. Use pirate vocabulary and mannerisms in your replies.",
15
+ },
16
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting, matey?"},
17
+ ]
18
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
19
+
20
+ # Ensemble generation with averaging (corrected)
21
+ responses = []
22
+ for model in models:
23
+ outputs = model(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
24
+ response = outputs[0]['generated_text']
25
+ responses.append(response)
26
+
27
+ # Average the generated text directly
28
+ averaged_text = ""
29
+ for i in range(min(len(response) for response in responses)):
30
+ token_counts = {}
31
+ for response in responses:
32
+ token = response[i]
33
+ token_counts[token] = token_counts.get(token, 0) + 1
34
+ most_frequent_tokens = sorted(token_counts.items(), key=lambda x: x[1], reverse=True)
35
+ averaged_token = most_frequent_tokens[0][0] # Choose the most frequent token
36
+ averaged_text += averaged_token
37
+
38
+ print(averaged_text)