TuringsSolutions commited on
Commit
ab82b43
·
verified ·
1 Parent(s): 26ce596

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -11
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import numpy as np
3
  import logging
 
4
  from tqdm import tqdm
5
 
6
  class SwarmAgent:
@@ -11,10 +12,11 @@ class SwarmAgent:
11
  self.v = np.zeros_like(position)
12
 
13
  class SwarmNeuralNetwork:
14
- def __init__(self, num_agents, param_shape, target_response):
15
  self.param_shape = param_shape
16
  self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
17
  self.target_response = target_response
 
18
  self.current_epoch = 0
19
  self.noise_schedule = np.linspace(0.1, 0.002, 1000) # Noise schedule
20
 
@@ -25,11 +27,14 @@ class SwarmNeuralNetwork:
25
  return np.random.randn(*self.param_shape) * 0.01
26
 
27
  def call_api(self, params):
28
- # Placeholder for API call logic
29
- # Simulate API call response based on parameters
30
- # In real scenario, this would involve an actual API call
31
- response = np.sum(params) # Simulate response as sum of parameters
32
- return response
 
 
 
33
 
34
  def update_agents(self, timestep):
35
  noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
@@ -85,16 +90,16 @@ class SwarmNeuralNetwork:
85
  return best_agent.position
86
 
87
  # Gradio Interface
88
- def train_snn(target_response, num_agents, epochs):
89
  param_shape = (10,) # Example parameter shape
90
- snn = SwarmNeuralNetwork(num_agents=num_agents, param_shape=param_shape, target_response=target_response)
91
  snn.train(epochs=epochs)
92
  snn.save_model('snn_model.npy')
93
  return snn.generate_new_parameters()
94
 
95
- def generate_new_parameters():
96
  param_shape = (10,) # Example parameter shape
97
- snn = SwarmNeuralNetwork(num_agents=2000, param_shape=param_shape, target_response=None)
98
  snn.load_model('snn_model.npy')
99
  new_params = snn.generate_new_parameters()
100
  return new_params
@@ -102,13 +107,14 @@ def generate_new_parameters():
102
  interface = gr.Interface(
103
  fn=train_snn,
104
  inputs=[
 
105
  gr.Number(label="Target Response"),
106
  gr.Slider(minimum=500, maximum=3000, value=2000, label="Number of Agents"),
107
  gr.Slider(minimum=10, maximum=200, value=100, label="Number of Epochs")
108
  ],
109
  outputs=gr.Textbox(label="Generated Parameters"),
110
  title="Swarm Neural Network API Parameter Optimization",
111
- description="Set the target response and the number of agents and epochs to train the Swarm Neural Network to generate optimized API parameters."
112
  )
113
 
114
  interface.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import logging
4
+ import requests
5
  from tqdm import tqdm
6
 
7
  class SwarmAgent:
 
12
  self.v = np.zeros_like(position)
13
 
14
  class SwarmNeuralNetwork:
15
+ def __init__(self, num_agents, param_shape, target_response, api_endpoint):
16
  self.param_shape = param_shape
17
  self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
18
  self.target_response = target_response
19
+ self.api_endpoint = api_endpoint
20
  self.current_epoch = 0
21
  self.noise_schedule = np.linspace(0.1, 0.002, 1000) # Noise schedule
22
 
 
27
  return np.random.randn(*self.param_shape) * 0.01
28
 
29
  def call_api(self, params):
30
+ # Make an API call with parameters
31
+ # In a real-world scenario, params would be converted into a proper API request format
32
+ try:
33
+ response = requests.get(self.api_endpoint)
34
+ response_value = len(response.text) # Example: use length of response text as a metric
35
+ except Exception as e:
36
+ response_value = 0 # Fallback if API call fails
37
+ return response_value
38
 
39
  def update_agents(self, timestep):
40
  noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
 
90
  return best_agent.position
91
 
92
  # Gradio Interface
93
+ def train_snn(api_endpoint, target_response, num_agents, epochs):
94
  param_shape = (10,) # Example parameter shape
95
+ snn = SwarmNeuralNetwork(num_agents=num_agents, param_shape=param_shape, target_response=target_response, api_endpoint=api_endpoint)
96
  snn.train(epochs=epochs)
97
  snn.save_model('snn_model.npy')
98
  return snn.generate_new_parameters()
99
 
100
+ def generate_new_parameters(api_endpoint):
101
  param_shape = (10,) # Example parameter shape
102
+ snn = SwarmNeuralNetwork(num_agents=2000, param_shape=param_shape, target_response=None, api_endpoint=api_endpoint)
103
  snn.load_model('snn_model.npy')
104
  new_params = snn.generate_new_parameters()
105
  return new_params
 
107
  interface = gr.Interface(
108
  fn=train_snn,
109
  inputs=[
110
+ gr.Textbox(label="API Endpoint", value="https://meowfacts.herokuapp.com/"),
111
  gr.Number(label="Target Response"),
112
  gr.Slider(minimum=500, maximum=3000, value=2000, label="Number of Agents"),
113
  gr.Slider(minimum=10, maximum=200, value=100, label="Number of Epochs")
114
  ],
115
  outputs=gr.Textbox(label="Generated Parameters"),
116
  title="Swarm Neural Network API Parameter Optimization",
117
+ description="Set the API endpoint, target response, number of agents, and epochs to train the Swarm Neural Network to generate optimized API parameters."
118
  )
119
 
120
  interface.launch()