TuringsSolutions commited on
Commit
d7db496
·
verified ·
1 Parent(s): 5e4cd5a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import logging
4
+ from tqdm import tqdm
5
+
6
+ class SwarmAgent:
7
+ def __init__(self, position, velocity):
8
+ self.position = position
9
+ self.velocity = velocity
10
+ self.m = np.zeros_like(position)
11
+ self.v = np.zeros_like(position)
12
+
13
+ class SwarmNeuralNetwork:
14
+ def __init__(self, num_agents, param_shape, target_response):
15
+ self.param_shape = param_shape
16
+ self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
17
+ self.target_response = target_response
18
+ self.current_epoch = 0
19
+ self.noise_schedule = np.linspace(0.1, 0.002, 1000) # Noise schedule
20
+
21
+ def random_position(self):
22
+ return np.random.randn(*self.param_shape) # Use Gaussian noise
23
+
24
+ def random_velocity(self):
25
+ return np.random.randn(*self.param_shape) * 0.01
26
+
27
+ def call_api(self, params):
28
+ # Placeholder for API call logic
29
+ # Simulate API call response based on parameters
30
+ # In real scenario, this would involve an actual API call
31
+ response = np.sum(params) # Simulate response as sum of parameters
32
+ return response
33
+
34
+ def update_agents(self, timestep):
35
+ noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
36
+
37
+ for agent in self.agents:
38
+ # Predict noise
39
+ predicted_noise = agent.position - self.target_response
40
+
41
+ # Denoise
42
+ denoised = (agent.position - noise_level * predicted_noise) / (1 - noise_level)
43
+
44
+ # Add scaled noise for next step
45
+ agent.position = denoised + np.random.randn(*self.param_shape) * np.sqrt(noise_level)
46
+
47
+ # Clip values
48
+ agent.position = np.clip(agent.position, -1, 1)
49
+
50
+ def train(self, epochs):
51
+ logging.basicConfig(filename='training.log', level=logging.INFO)
52
+
53
+ for epoch in tqdm(range(epochs), desc="Training Epochs"):
54
+ self.update_agents(epoch)
55
+
56
+ # Evaluate performance
57
+ responses = [self.call_api(agent.position) for agent in self.agents]
58
+ mse = np.mean((np.array(responses) - self.target_response)**2)
59
+ logging.info(f"Epoch {epoch}, MSE: {mse}")
60
+
61
+ if epoch % 10 == 0:
62
+ print(f"Epoch {epoch}, MSE: {mse}")
63
+ self.current_epoch += 1
64
+
65
+ def save_model(self, filename):
66
+ model_state = {
67
+ 'agents': self.agents,
68
+ 'current_epoch': self.current_epoch
69
+ }
70
+ np.save(filename, model_state)
71
+
72
+ def load_model(self, filename):
73
+ model_state = np.load(filename, allow_pickle=True).item()
74
+ self.agents = model_state['agents']
75
+ self.current_epoch = model_state['current_epoch']
76
+
77
+ def generate_new_parameters(self, num_steps=1000):
78
+ for agent in self.agents:
79
+ agent.position = np.random.randn(*self.param_shape)
80
+
81
+ for step in tqdm(range(num_steps), desc="Generating Parameters"):
82
+ self.update_agents(num_steps - step - 1) # Reverse order
83
+
84
+ best_agent = min(self.agents, key=lambda agent: np.mean((self.call_api(agent.position) - self.target_response)**2))
85
+ return best_agent.position
86
+
87
+ # Gradio Interface
88
+ def train_snn(target_response, num_agents, epochs):
89
+ param_shape = (10,) # Example parameter shape
90
+ snn = SwarmNeuralNetwork(num_agents=num_agents, param_shape=param_shape, target_response=target_response)
91
+ snn.train(epochs=epochs)
92
+ snn.save_model('snn_model.npy')
93
+ return snn.generate_new_parameters()
94
+
95
+ def generate_new_parameters():
96
+ param_shape = (10,) # Example parameter shape
97
+ snn = SwarmNeuralNetwork(num_agents=2000, param_shape=param_shape, target_response=None)
98
+ snn.load_model('snn_model.npy')
99
+ new_params = snn.generate_new_parameters()
100
+ return new_params
101
+
102
+ interface = gr.Interface(
103
+ fn=train_snn,
104
+ inputs=[
105
+ gr.Number(label="Target Response"),
106
+ gr.Slider(minimum=500, maximum=3000, value=2000, label="Number of Agents"),
107
+ gr.Slider(minimum=10, maximum=200, value=100, label="Number of Epochs")
108
+ ],
109
+ outputs=gr.Textbox(label="Generated Parameters"),
110
+ title="Swarm Neural Network API Parameter Optimization",
111
+ description="Set the target response and the number of agents and epochs to train the Swarm Neural Network to generate optimized API parameters."
112
+ )
113
+
114
+ interface.launch()