import gradio as gr import numpy as np import logging from tqdm import tqdm class SwarmAgent: def __init__(self, position, velocity): self.position = position self.velocity = velocity self.m = np.zeros_like(position) self.v = np.zeros_like(position) class SwarmNeuralNetwork: def __init__(self, num_agents, param_shape, target_response, optimization_function): self.param_shape = param_shape self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)] self.target_response = target_response self.optimization_function = optimization_function self.current_epoch = 0 self.noise_schedule = np.linspace(0.1, 0.002, 1000) # Noise schedule def random_position(self): return np.random.randn(*self.param_shape) # Use Gaussian noise def random_velocity(self): return np.random.randn(*self.param_shape) * 0.01 def evaluate_function(self, params): # Evaluate the optimization function response = self.optimization_function(params) return response def update_agents(self, timestep): noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)] for agent in self.agents: # Predict noise predicted_noise = agent.position - self.target_response # Denoise denoised = (agent.position - noise_level * predicted_noise) / (1 - noise_level) # Add scaled noise for next step agent.position = denoised + np.random.randn(*self.param_shape) * np.sqrt(noise_level) # Clip values agent.position = np.clip(agent.position, -1, 1) def train(self, epochs): logging.basicConfig(filename='training.log', level=logging.INFO) for epoch in tqdm(range(epochs), desc="Training Epochs"): self.update_agents(epoch) # Evaluate performance responses = [self.evaluate_function(agent.position) for agent in self.agents] mse = np.mean((np.array(responses) - self.target_response)**2) logging.info(f"Epoch {epoch}, MSE: {mse}") if epoch % 10 == 0: print(f"Epoch {epoch}, MSE: {mse}") self.current_epoch += 1 def save_model(self, filename): model_state = { 'agents': self.agents, 'current_epoch': self.current_epoch } np.save(filename, model_state) def load_model(self, filename): model_state = np.load(filename, allow_pickle=True).item() self.agents = model_state['agents'] self.current_epoch = model_state['current_epoch'] def generate_new_parameters(self, num_steps=1000): for agent in self.agents: agent.position = np.random.randn(*self.param_shape) for step in tqdm(range(num_steps), desc="Generating Parameters"): self.update_agents(num_steps - step - 1) # Reverse order best_agent = min(self.agents, key=lambda agent: np.mean((self.evaluate_function(agent.position) - self.target_response)**2)) return best_agent.position # Optimization function def optimization_function(params): return np.sum((params - 3)**2) # Example: simple quadratic function # Gradio Interface def train_snn(target_response, num_agents, epochs): param_shape = (10,) # Example parameter shape snn = SwarmNeuralNetwork(num_agents=num_agents, param_shape=param_shape, target_response=target_response, optimization_function=optimization_function) snn.train(epochs=epochs) snn.save_model('snn_model.npy') return snn.generate_new_parameters() def generate_new_parameters(): param_shape = (10,) # Example parameter shape snn = SwarmNeuralNetwork(num_agents=2000, param_shape=param_shape, target_response=None, optimization_function=optimization_function) snn.load_model('snn_model.npy') new_params = snn.generate_new_parameters() return new_params interface = gr.Interface( fn=train_snn, inputs=[ gr.Number(label="Target Response"), gr.Slider(minimum=500, maximum=3000, value=2000, label="Number of Agents"), gr.Slider(minimum=10, maximum=200, value=100, label="Number of Epochs") ], outputs=gr.Textbox(label="Generated Parameters"), title="Swarm Neural Network Function Optimization", description="Set the target response, number of agents, and epochs to train the Swarm Neural Network to generate optimized function parameters." ) interface.launch()